手机版
您的当前位置: 老骥秘书网 > 范文大全 > 公文范文 > 一类具有季节交替的n维Gilpin-Ayala竞争模型的动力学

一类具有季节交替的n维Gilpin-Ayala竞争模型的动力学

来源:公文范文 时间:2024-09-10 20:00:02 推荐访问: 交替 动力学 模型

陈梅香 谢溪庄

摘要:研究一類具有季节交替的n维Gilpin-Ayala竞争模型。利用单调动力系统的理论,当n=1时,系统存在着阈值动力学。根据离散竞争映射的负载单形理论,证得n维系统存在一个(n-1)维的负载单形。结果表明:(n-1)维的负载单形吸引了系统在Rn+中的所有非平凡轨道。

关键词:季节交替;
Gilpin-Ayala竞争模型;
周期解;
庞加莱映射;
负载单形

中图分类号:O 175.13文献标志码:A

文章编号:1000-5013(2024)03-0417-06

Dynamics of A n-Dimensional Gilpin-Ayala Competition Model With Seasonal Succession

CHEN Meixiang,XIE Xizhuang

(School of Mathematical Sciences,Huaqiao University,Quanzhou 362021,China)

Abstract:A type of n dimensional Gilpin-Ayala competition models with seasonal succession are studied. Using the theory of monotonic dynamical systems,when n=1,the system has threshold dynamics. Using the theory of carrying simplex of discrete competitive mappings,the existence of a (n-1) dimensional carrying simplex in the n dimensional system is proved. The result shows that (n-1) dimensional carrying simplex attracts all nontrivial orbits in Rn+of the system.

Keywords:seasonal succession;
Gilpin-Ayala competition model;
periodic solution;
Poincaré mapping;
carrying simplex

1 预备知识

季节性更替是自然界的普遍现象,深深影响着种群的生存与增长,群落的结构和组成[1]。当气温、降水量、气压、湿度和季风随着季节的更替而变化时,种群和群落处于一个周期性波动的外部环境中[2-3]。Sommer等[4]利用季节交替模型研究种群动力学[5-7]。在经典的n种群Gilpin-Ayala竞争模型[8-9]的基础上,利用文献[2,5]中的建模方法,构造具有季节交替的n种群Gilpin-Ayala竞争模型,即

2 基本定义和引理

3 负载单形的存在性及其证明

4 结论

1)当n=1时,系统(1)存在阈值动力学,即当rφ-λ(1-φ)≤0时,不管种群的初始数量处于什么水平,种群都将走向灭绝;
当rφ-λ(1-φ)>0时,系统(1)存在唯一的正周期解,使种群的初始数量为非零值时,最终都将收敛到这个正周期解。

2)当n≥2时,系统(1)必将存在一个(n-1)维的有界不变闭曲面(负载单形),其吸引了系统(1)的所有非平凡轨道。

参考文献:

[1]WHITE E R,HASTINGS A.Seasonality in ecology:
Progress and prospects in theory [J].Ecological Complexity,2020,44:100867.DOI:10.1016/j.ecocom.2020.100867.

[2]KLAUSMEIER C A.Successional state dynamics:
A novel approach to modeling nonequilibrium foodweb dynamics[J].Journal of Theoretical Biology,2010,262:584-595.DOI:10.1016/j.jtbi.2009.10.018.

[3]KREMER C T,KLAUSMEIER C A.Coexistence in a variable environment:
Eco-evolutionary perspectives[J].Journal of Theoretical Biology,2013,339:14-25.DOI:10.1016/j.jtbi.2013.05.005.

[4]SOMMER U,GLIWICZ Z M,LAMPERT W,et al.The PEG-model of seasonal succession of planktonic events in fresh waters[J].Archiv für Hydrobiologie,1986,106:433-471.

[5]HSU S B,ZHAO Xiaoqiang.A Lotka-Volterra competition model with seasonal succession[J].Journal of Mathematical Biology,2012,64:109-130.DOI:10.1007/s00285-011-0408-6.

[6]FENG Xiaomei,LIU Yunfeng,RUAN Shigui,et al.Periodic dynamics of a single species model with seasonal Michaelis-Menten type harvesting[J].Journal of Differential Equations,2023,354:237-263.DOI:10.1016/j.jde.2023.01.014.

[7]PU Liqiong,LIN Zhigui,LOU Yuan.A west nile virus nonlocal model with free boundaries and seasonal succession[J].Journal of Mathematical Biology,2023,86:25.DOI:10.1007/s00285-022-01860-x.

[8]GILPIN M,AYALA F.Global models of growth and competition[J].Proceeding of the National Academy of Sciences of the United States of America,1973,70:3590-3593.DOI:10.1073/pnas.70.12.3590.

[9]GILPIN M,AYALA F.Schoener′s model and drosophila competition[J].Theoretical Population Biology,1976,9(1):12-14.DOI:10.1016/0040-5809(76)90031-9.

[10]GOH B S,AGNEW T T.Stability in Gilpin and Ayala′s models of competition[J].Journal of Mathematical Biology,1977,4:275-279.DOI:10.1007/BF00280977.

[11]WANG Yi,JIANG Jifa.Uniqueness and attractivity of the carrying simplex for discrete-time competitive dynamical systems[J].Journal of Differential Equations,2002,186:611-632.DOI:10.1016/S0022-0396(02)00025-6.

[12]ZHAO Xiaoqiang.Dynamical systems in population biology[M].2nd.New York:Springer,2017.DOI:10.1007/978-3-319-56433-3.

[13]DIEKMANN O,WANG Yi,YAN Ping.Carrying simplices in discrete competitive systems and age-structured semelparous populations[J].Discrete and Continuous Dynamical Systems,2008,20:37-52.DOI:10.3934/dcds.2008.20.37.

[14]NIU Lin,WANG Yi,XIE Xizhuang.Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications[J].Discrete and Continuous Dynamical Systems-Series B,2021,26(4):2161-2172.DOI:10.3934/dcdsb.2021014.

[15]SMITH H L.Periodic solutions of periodic competitive and cooperative systems[J].SIAM Journal on Mathematical Analysis,1986,17:1289-1318.DOI:10.1137/0517091.

[16]JIANG Jifa,MIERCZYSKI J,WANG Yi.Smoothness of the carrying simplex for discrete-time competitive dynamical systems:
A characterization of neat embedding[J].Journal of Differential Equations,2009,246:1623-1672.DOI:10.1016/j.jde.2008.10.008.

(責任编辑:陈志贤  英文审校:黄心中)

推荐内容

老骥秘书网 https://www.round-online.com

Copyright © 2002-2018 . 老骥秘书网 版权所有

Top