手机版
您的当前位置: 老骥秘书网 > 范文大全 > 公文范文 > 辽宁本溪地区新太古代晚期钾质花岗岩的发现及其地质意义

辽宁本溪地区新太古代晚期钾质花岗岩的发现及其地质意义

来源:公文范文 时间:2024-09-16 14:00:03 推荐访问: 本溪 花岗岩 花岗岩石材国家标准规定

尹志刚 李萌萌 吴子杰 陈军典 姜然 张凯强 姜琦 郭浩

摘要:辽宁本溪地区位于华北克拉通东部陆块东北部,区内广泛发育新太古代深成侵入岩和变质表壳岩,尚无钾质花岗岩的报道。钾质花岗岩的形成过程是早期陆壳发育成熟和稳定的重要标志,本次钾质花岗岩的发现对系统的研究华北克拉通早期陆壳的形成与演化具有重要的价值。本文对本溪地区马家沟的钾质花岗岩进行了岩石学、成岩年代学、岩石地球化学的研究,探讨了岩石成因和形成的构造背景。马家沟岩体为片麻状中细粒黑云母二长花岗岩。锆石U-Pb测年数据显示,岩石207Pb/206 Pb加權平均年龄为(2 490±21)Ma,形成于新太古代晚期。该岩体属弱过铝质、高钾钙碱性系列钾质岩石;
主要富集高场强元素La、Zr、Th及大离子亲石元素K、Nd等元素,亏损P元素、高场强元素Nb和大离子亲石元素Sr、Ti等;
REE曲线为右倾型,负Eu异常,属于S型花岗岩。研究区钾质花岗岩岩浆主要来源于地壳,是变质泥岩部分熔融的产物,形成于活动大陆边缘碰撞造山后的伸展环境,代表华北太古宙克拉通固结基底形成之前的最后一次岩浆活动,标志着在新太古代晚期本溪地区微陆块已拼贴完成,并与其他地区一起构成稳定的华北太古宙克拉通。

关键词:新太古代晚期;
岩石地球化学;
锆石U-Pb年代学;
钾质花岗岩;
本溪地区

doi:10.13278/j.cnki.jjuese.20220150 中图分类号:P588.12;
P597 文献标志码:A

收稿日期:2022-05-18

作者简介:尹志刚(1962—),男,教授,博士,主要从事区域地质矿产资源方面的研究,E-mail:yzg63@163.com

基金项目:中国地质调查局项目(1212011120734 );
辽宁工程技术大学学科创新团队资助项目(LNTU20TD-14)

Supported by the Project of China Geological Survey (1212011120734 ) and the Project Supported by Discipline Innovation Team of Liaoning Technical University (LNTU20TD-14)

The Discovery and Geological Implications of Late Neoarchean

Kaligranites in Benxi Area, Liaoning ProvinceYin Zhigang1,Li Mengmeng1,Wu Zijie2, 3,Chen Jundian4,Jiang Ran1

Zhang Kaiqiang1,Jiang Qi1,Guo Hao1

1. College of Mining Engineering,Liaoning Technical University,Fuxin 123000, Liaoning,China

2. Liaoning Provincial Institute of Geological Exploration Co., Ltd., Dalian 116100, Liaoning,China

3. School of Geosciences, China University of Petroleum(EastChina), Qingdao 266580, Shandong,China

4. Geophysical Measuring Exploration Institute of Liaoning Province,Shenyang 110031,China

Abstract:
The Benxi area of Liaoning Province is located in the northeastern part of the eastern North China craton, where Neoarchean plutonic intrusive rocks and metamorphic supracrustal rocks are widely developed, but no kaligranites have been reported. The formation process of kaligranites is an important symbol of the maturation and stability of the early continental crust. The discovery of kaligranites is significant for the systematic study of the formation and evolution of the early continental crust in the North China craton. In this paper, the petrology, diagenetic age, and petrogeochemistry of kaligranites in Majiagou, Benxi area are studied, and the petrogenesis and tectonic setting of formation are discussed. Majiagou pluton is a gneissic medium-fine-grained biotite monzogranite. The  zircon U-Pb dating data show that the207 Pb/206 Pb weighted average age is (2 490±21) Ma, suggesting the kaligranites formed in the Late Neoarchean. The granite is weakly peraluminous and high potassium calc alkaline kaligranite. The high field strength elements La, Zr, Th and large ion lithophile elements K, Nd are enriched, while high field elements P, strength elements Nb and large ion lithophile elements Sr, Ti are depleted. The REE partition curve is rightward with negative Eu anomalies, indicating S-type granite. The magma originated from the crust and the product of partial melting of metamorphic mudstone, which formed in an extensional environment after collisional orogenesis at active continental margins. It represents the last magmatic activity before the formation of the consolidated basement of the Archean craton in North China, and marks the completion of the collage of micro-blocks in Benxi area in the Late Neoarchean, and together with other regions, forming a stable North China Archean craton.

Key words:
Late Neoarchean; rock geochemistry; zircon U-Pb chronology; kaligranite; Benxi area

0 引言

华北克拉通是迄今为止世界上发现的最古老的克拉通之一,也是中国已知的最大古陆块,拥有超过3.8 Ga地质演化历史[1-2]。与现今世界上已知的其他大多数广泛发育(约2.7 Ga)的克拉通有所不同,华北克拉通不仅保留了新太古代早期岩浆活动的原始记录,而且其独特之处在于也存在新太古代晚期强烈的构造岩浆活动[3-4]。约2.5 Ga华北克拉通岩浆是以高温富含钠元素的TTG岩系为主,并伴有大量低温富钾花岗质岩类,包括二长花岗岩类以及钾质花岗岩。新太古代晚期大陆地壳性质的转变是目前学者们关注的前沿课题。部分学者提出,新太古代晚期大量花岗岩类岩浆的侵位是导致大陆地壳性质转变的关键原因[5-6]。与新太古代早期以TTG片麻岩为主不同,新太古代晚期花岗岩类岩浆作用表现出明显的成分多样化特点,尤其是产出规模较大的富钾花岗岩类岩石[6-7]。这些富钾花岗岩类岩石为我们深入探讨新太古代晚期大陆地壳的地质构造和演化过程提供了重要依据[8]

钾质花岗岩既是陆壳岩浆再循环的直接结果,也是华北太古宙克拉通岩浆循环终止的证据,对科学研究地球早期壳幔演化的形成历史和地壳构造的运动规律都具有十分重要的理论研究价值。从目前国内获得的有关资料及研究来看,分布在不同地点的钾质花岗岩,它们各自的地球矿物组成、构造环境类型以及地球化学特征等方面均有非常明显的成因变化。一般认为,尽管它们可能属于陆壳部分熔融过程的产物,但实际上它们包含的岩石类型十分多样,既有A型也有I型、S型,充分的说明了其原岩结构性质以及形成地质构造背景中的复杂性。通过详细的野外填图工作,笔者在辽宁本溪地区发现了新太古代晚期钾质花岗岩体。本文通过对钾质花岗岩的岩石学、锆石U-Pb年龄、岩石地球化学等深入研究,系统讨论本溪地区钾质花岗岩的形成时代、岩石成因、构造环境以及地质意义,以期为早期华北克拉通的形成及演化提供直接的证据。

1 区域地质背景及岩石学特征

1.1 区域地质背景

前人资料通常将华北克拉通基底划分为3块:东部陆块、西部陆块和位于二者中间的中央造山带,认为华北克拉通基底是由东、西陆块沿中央造山带碰撞拼合而成,并实现克拉通化,而新太古代晚期—古元古代早期是克拉通化非常重要的一个地壳生长发育阶段[9-12]。研究表明[13],鞍山—本溪地区太古宙早期古老岩石记录了多期地壳生长和再循环事件,可能与大量花岗岩类岩浆的侵位有关。在鞍山—本溪地区存在着古老的太古宙地体,是由花岗-绿岩带(或变质表壳岩)组成的北东向太古宙古陆块,经历了复杂、漫长的地质演化历史,对于研究前寒武纪地质构造形成及发展具有重要的地质意义[14]。华北克拉通新太古代晚期—古元古代早期钾质花岗岩的出露范围比较广泛,包括赞皇杂岩中菅等钾质花岗岩、冀西北淮安钾质花岗岩、鞍山齐大山钾质花岗岩、中条山涑水杂岩、太行山王屋山钾质花岗岩和中条山烟庄钾质花岗岩[15-20]等(表1)。研究区位于华北克拉通东部陆块东北部(图1a),区内共有6个侵入体,分布于马家沟一带(图1b),出露的新太古代地层为鞍山岩群的茨沟岩组和大峪沟岩组,主要由斜长角闪岩、二长变粒岩、石英片岩和片麻岩等岩性组成,构成古老的结晶基地[22]。区内发现的新太古代晚期钾质花岗岩体岩性为片麻状中细粒黑云母二长花岗岩,分布面积约为37.55 km2,又称马家沟岩体。在平面上呈北西、北东向的不规则条带状分布,侵入茨沟岩组、大峪沟岩组,内部可见磁铁石英岩及斜长角闪岩包体。

1.2 岩石学特征

马家沟岩体(图2):片麻状中细粒黑云母二长花岗岩,颜色呈灰粉色-肉红色,为中细粒似斑状花岗结构,片麻状构造。斑晶为钾长石(约7%),粒径多集中在4.00~7.00 mm之间;
主要组成矿物成分为斜长石(28%~40%)、钾长石(25%~37%)、石英(20%~30%)、黑云母(3%~15%)及白云母(0~2%)等,偶见角闪石。斜长石一般为更长石,多数呈半自形或不规则状,少数呈集合体分布,粒径多集中在0.15~3.10 mm之间,具聚片双晶结构且发育相对较好,多已绢云母化或钠黝帘石化,部分具定向分布趋势;
钾长石为微斜长石,不规则粒状,个别呈半自形,部分充填于其他矿物颗粒之间,部分沿长轴呈条带状交错分布,粒径在0.30~5.00 mm之间,部分微斜长石发生泥化;
石英多呈不规则细粒状,集合体呈条带状或豆荚状分布,粒径在0.10~3.50 mm之间;
黑云母颜色大多呈黄色-黄绿色,集合体为片状或细小片状,粒径在0.15~1.50 mm之间,多数出现了绿泥石化和脱铁化现象,且都呈断续条带状定向分布;
白云母呈片状,有沿长轴定向分布的趋势,分布不均匀;
角闪石呈柱状,零星分布,粒径约为1.00 mm。

2 SHRIMP锆石U-Pb测年

样品(QP30TW5)采自辽宁省本溪市平山区附近的新立屯—大峪村马家沟岩体(图2),从中挑选分离并提取出颗粒形态相似且晶体粒度均匀、晶形较好的锆石,准备进一步确定岩石形成的年代。在北京离子探针中心完成了标准锆石测年。首先在SHRIMP Ⅱ上进行了分析和标定,对标准锆石中的TEM(417 Ma)质量分数进行了分馏法的校正,运用标准锆石BR266(559 Ma)标定测量TEM样品中的U、Th和Pb质量分数;
其次用标准锆石TEM和M257(U質量分数为840×10-6)分别校正样品中的206 Pb/238 U年龄和U、Th的质量分数;
再次,标准锆石(TEM)和待检测的样品比值一般为1∶3,每个数据点测年采用5组扫描,使用204 Pb进行年龄校正;
最后采用SQUID和Isoplot程序[23]分别进行数据处理。每个数据误差都控制在±1σ,加权平均年龄误差都控制在95%置信度,详细的测试方法、实验过程、相关参数和误差校正见文献[24]。

这些锆石颗粒晶体多以浑圆柱状的结晶为主,在阴极发光图像中显示出较好的结晶振荡环带(图3)。对马家沟岩体样品锆石年龄测定(表2),其中4个锆石数据受到岩石变质作用影响较大,故只选取15个较为和谐的锆石数据。根据锆石SHRIMP U-Pb年龄谐和图(图4)所示,其上交点年龄为(2 491±17) Ma,置信度为95%(MSWD=4.3,n=15)。选取的样品中岩浆锆石的207 Pb/206Pb表面年龄分布于(2 560±11)~(2 028±24) Ma之间,通过计算可得到其207Pb/206Pb加权平均年龄为(2 490±21) Ma,与上交点表面年龄值在误差限定范围内一致,可以代表马家沟岩体的形成年龄,确定其形成时代为新太古代晚期。

3 岩石地球化学特征

3.1 分析测试方法

主量元素测定由辽宁地勘局第一实验室完成,微量元素和稀土元素测定由吉林大学科学实验中心完成。其中,主量元素分析采用压片法X射线荧光光谱仪(XRF)测定,分析准确度和精度优于±2%,其中FeO质量分数通过湿化学方法测试。测试仪器型号规格为72-G型分光光度计和6410火焰光度计,检测试验结果依据国家规定标准为GB/T14506.32010[25](硅酸盐岩石化学分析方法)。

微量元素、稀土元素化学分析采用电感耦合等离子体质谱法测定,准确度和精度优于±10%。测试的仪器型号为ICP-MS,检测依据文献[26]。

3.2 主量元素

本次共完成9件岩石地球化学样品分析。研究区马家沟岩体主量元素分析结果见表3。数据显示:w(SiO2)為66.62%~75.08%,w(K2O)为3.94%~6.46%,w(Na2O)为2.75%~4.94%,w(CaO)为0.22%~1.75%,w(Al2O3)为13.62%~14.89%;
铝饱和指数A/CNK值在1.02~1.15之间,平均值为1.10。w(MgO)为0.34%~1.63%,w(TiO2)仅为0.10%~0.73%,w(P2O5)为0.03%~0.43%,岩石固结指数(IS)为3.10~11.00,分异指数(ID)为78.41~94.83,表明岩石分异程度较高;
里特曼指数(σ)为2.30~3.20。在An-Ab-Or图解(图5a)上,样品点多数落入花岗岩区域中;
在A/NK-A/CNK铝饱和指数图解(图5b)上,样品点均落入弱过铝质区;
在w(K2O)-w(SiO2)图解(图6a)上,样品点多数落入高钾钙碱性系列,少数落入钾玄岩系列范围内;
在w(K2O)-w(Na2O)图解(图6b)上,样品点多数落入钾质区,少数落入高钾质区。综上所述,新太古代晚期马家沟岩体为弱过铝质、高钾钙碱性系列钾质岩石。

3.3 微量和稀土元素

岩石微量和稀土元素质量分数测定结果见表3。马家沟岩体样品w(∑REE)为32.92×10-6~744.44×10-6,平均值为249.52×10-6
w(LREE)值为29.77×10-6~710.45×10-6,w(HREE)值为2.02×10-6~33.99×10-6,LREE/HREE 值为8.07~25.66;
(La/Yb)N值为6.26~35.89,变化范围较大,δEu值为0.17~0.77(除QP32S1-1样品为1.10之外),均小于1,具负Eu异常。稀土元素球粒陨石标准化配分曲线(图7a)显示:马家沟岩体曲线斜率较大,轻稀土元素曲线向右下方陡倾,指示岩体可能经历了相对较强的轻稀土元素分异作用;
而重稀土元素曲线向右下方缓倾,可能表明矿物的分异对重稀土元素的影响较小。以上数据表明马家沟岩体稀土配分模式为轻稀土富集、重稀土相对平坦向右倾斜和Eu亏损的右倾型。在微量元素原始地幔标准化蛛网图(图7b)中,可以明显看出马家沟岩体微量元素质量分数变化较大,富集高场强元素La、Zr、Th和大离子亲石元素K、Nd等,亏损P元素、高场强元素Nb和大离子亲石元素Sr、Ti等。

4 讨论

4.1 岩石成因类型及岩浆源区性质

根据岩石的成因,花岗岩可以划分为4种类型:M型、I型、S型和A型。其中:M型花岗岩较为少见;
A型花岗岩通常是以碱性花岗岩为主;
I型花岗岩最显著的特点是含有角闪石、磁铁矿等矿物,Na2O/K2O>1,A/CNK<1.10;
而S型花岗岩多具有白云母、堇青石、石榴子石等矿物,铝饱和指数A/CNK>1.10,刚玉(C)>1[27]。无论是A型、I型或是S型,在经历过高度的结晶分异后,其矿物组成和化学成分都发生了低共结的变化,因此对于鉴定这3种花岗岩类型变得尤为困难。我们可以综合分析它们的地球化学特征和其存在的标志性矿物来进行判定。

本文数据显示,马家沟岩体为弱过铝质、高钾钙碱性系列钾质岩石,无碱性矿物出现,区别于A型花岗岩;
铝饱和指数A/CNK值在1.02~1.15之间,平均值为1.10,w(Na2O+K2O)值为7.65%~9.52%,平均值为8.84%。Na2O/K2O值除了QP32S1-1外其他均小于1,不同于其他典型的I型花岗岩(Na2O/K2O>1);
CIPW标准矿物出现刚玉(分子量为1.21~2.84,平均值为1.87(>1))以及样品中含有富铝矿物白云母,均显示S型花岗岩的特征。另外,大多数S型花岗岩贫Sr(w(Sr)<300×10-6),且w(Yb)大多介于1×10-6~7×10-6之间[28],样品中w(Sr)为73.49×10-6~331.90×10-6,平均值为180.18×10-6,w(Yb)为0.20×10-6~3.73×10-6,平均值为1.87×10-6。由A-C-F图解(图8)所示,样品点均落在“S型”区。综上所述,马家沟岩体应为S型花岗岩。

[12]万渝生,董春艳,颉颃强,等.华北克拉通太古宙研究若干进展[J].地球学报,2015,36(6):685-700.

Wan Yusheng,Dong Chunyan,Xie Hangqiang,et al.Some Advances in Archean Studies of the North China Craton[J].Acta Geoscientica Sinica,2015,36(6):685-700.

[13]田毅,余超,王广伟,等.鞍山—本溪—抚顺地区新太古代地质演化探讨[J].地质与资源,2015,24(4):301-308.

Tian Yi,Yu Chao,Wang Guangwei,et al.Discussion on the Neoarchean Geological Evloution in Anshan-Benxi-Fushun Region[J].Geology and Resources,2015,24(4):301-308.

[14]Zhao G C,Cawood P A.Precambrian Geology of China[J].Precambrian Research,2012,222/223:13-54.

[15]杨崇辉,杜利林,任留东,等.赞皇杂岩中太古宙末期菅等钾质花岗岩的成因及动力学背景[J].地学前缘,2011,18(2):62-78.

Yang Chonghui,Du Lilin,Ren Liudong,et al.Petrogenesis and Geodynamic Setting of Jiangdeng Potassic Granite at the end of the Neoarchean in Zanhuang Complex,North China Craton[J].Earth Science Frontiers,2011,18(2):62-78.

[16]Zhang H F,Zhai M G,Santosh M,et al.Geochronology and Petrogenesis of Neoarchean Potassic Meta-Granites from Huaian Complex:Implications for the Evolution of the North China Craton[J]. Gondwana Research,2011,20(1):82-105.

[17]Wan Y S,Dong C Y,Liu D Y,et al.Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton:A Review[J].Precambrian Research,2012,222/223:265-289.

[18]張瑞英,张成立,第五春荣,等.中条山前寒武纪花岗岩地球化学年代学及其地质意义[J].岩石学报,2012,28(11):3559-3573.

Zhang Ruiying,Zhang Chengli,Diwu Chunrong,et al.Zircon U-Pb Geochronology,Geochemistry and Its Geological Implications for the Precambrian Granitoids in Zhongtiao Mountain,Shanxi Province[J].Acta Petrologica Sinica,2012,28(11):3559-3573.

[19]Zhao Y,Li N B,Jiang Y H,et al.Petrogenesis of the Late Archean (~2.5 Ga) Na and K Rich Gran Itoids in the Zhongtiao Wangwu Region and Its Tectonic Significance for the Crustal Evolution of the North China Craton[J].Precambrian Research,2017,303:590-603.

[20]杨崇辉,杜利林,宋会侠,等.中条山地区涑水杂岩新太古代烟庄正长花岗岩年龄及成因:对华北克拉通地壳演化的制约[J].地球科学,2020,45(9):3161-3178.

Yang Chonghui,Du Lilin,Song Huixia,et al.Geochronology and Petrogenesis of Neoarchean Yanzhuang Syenogranites from Sushui Complex in the Zhongtiao Mountains:Implications for the Crustal Evolution of the North China Craton[J].Earth Scinece,2020,45(9):3161-3178.

[21]Zhai M G.Multi-Stage Crustal Growth and Cratonization of the North China Craton[J].Geoscience Frontiers,2014,5(4):457-469.

[22]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社,1989.

Bureau of Geology and Mineral Resource of Liaoning Province. Regional Geology of Liaoning Province[M].Beijing:Geological Publishing House,1989.

[23]Ludwig K R.Users Manual for ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[M].Berkeley:Berkeley Geochronology Centre,Special Publication,2003:1-74.

[24]宋彪,張玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48 (增刊1):26-30.

Song Biao,Zhang Yuhai,Wan Yusheng,et al.Mount Making and Procedure of the SHRIMP Dating[J]. Geological Review,2002,48(Sup.1):26-30.

[25]中国国家标准化管理委员会.硅酸盐岩石化学分析方法第3部分:二氧化硅量测定:GB/T 14506.3—2010 [S].北京:中国标准出版社,2010.

Standardization Administration of the Peoples Republic of China.Methods for Chemical Analysis of Silicate Rocks Part 3:Determination of Silicon Dioxide Content:GB/T 14506.3—2010[S].Beijing:Standards Press of China,2010.

[26]赵振华.微量元素地球化学原理[M].北京:科学出版社,1997.

Zhao Zhenhua.Principle of Geochemistry of Trace Elements[M].Beijing:Science Press,1997.

[27]肖庆辉,邱瑞照,邢作云,等.花岗岩成因研究前沿的认识[J].地质论评,2007,53(增刊1):17-27.

Xiao Qinghui,Qiu Ruizhao,Xing Zuoyun,et al.Understanding of the Frontiers of Granite Genesis Research[J].Geological Review,2007,53(Sup.1):17-27.

[28]贺元凯,吴泰然,罗红玲,等.华北板块北缘中段新太古代的陆-陆碰撞事件:来自合教S型花岗岩的证据[J].北京大学学报(自然科学版),2010,46(4):571-580.

He Yuankai,Wu Tairan,Luo Hongling,et al.Late Archean Continent-Continent Collision Event of Middle Segment of North Margin of North China Plate:Evidence from S-Type Granite of Hejiao Area[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2010,46(4):571-580.

[29]Green T H.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System[J].Chemical Geology,1995,120(3/4):347-359.

[30]Villaros A,Stevens G,Buick I S.Origins of the S-Type Cape Granites (South Africa)[J].Geochimica et Cosmochimica Acta,2006,70(18):A673.

[31]Liu C H,Liu S W,Li Q G,et al.Petrogenesis of the Paleo-Prot Erozoic Guandishan Granitoids in Shanxi Province:Constraints from Geochemistry and Nd Isotopes[J].Acta Geologica Sinica,2006,80(6):925-935.

[32]甘保平,第五春荣,王伯隆,等.贺兰山古元古代花岗岩年代学及地球化学特征:对华北克拉通西部孔兹岩带形成和演化的制约[J].岩石学报,2019,35(8):2325-2343.

Gan Baoping,Diwu Chunrong,Wang Bolong,et al.Geochronology and Geochemistry of the Paleoproterozoic Granites from the Helanshan Region:Contrains on the Formation and Evolution of Khodalite Belt in the Western North China Craton[J].Acta Petrologica Sinica,2019,35(8):2325-2343.

[33]Li Z,Wei C J.Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt,North China Craton:Petrogenesis and Tectonic Implications[J].Precambrian Research,2017,292:175-193.

[34]王躍,周奇明,张金龙,等.鲁西地区新太古代地壳增生事件:来自花岗岩和二长花岗岩U-Pb年代学、Hf同位素和岩石地球化学的证据[J].吉林大学学报(地球科学版),2022,52(2):463-485.

Wang Yue,Zhou Qiming,Zhang Jinlong,et al.Neoarchean Crustal Accretion in Western Shandong Province:Evidence from Granite and Monzogranite U-Pb Chronology,Hf Isotope and Rock Geochemistry[J].Journal of Jilin University (Earth Science Edition),2022,52(2):463-485.

[35]Zhao G C,Cawood P A,Li S Z,et al.Amalgamation of the North China Craton:Key Issues and Discussion[J].Precambrian Research,2012,222/223:55-76.

[36]Zhao G C,Zhai M G.Lithotectonic Elements of Precambrian Basement in the North China Craton:Review and Tectonic Implications[J].Gondwana Research,2013,23(4):1207-1240.

[37]彭游博. 辽北开原地区新太古代变质深成岩LA-ICP-MS锆石U-Pb年龄及地球化学特征[J]. 地质通报,2020,39(5):670-680.

Peng Youbo.LA-ICP-MS Zircon U-Pb Age and Geochemical Characteristics of Neoarchaean Metamorphic Plutonic Rocks in Kaiyuan Area of Northern Liaoning Province[J]. Geological Bulletin of China,2020,39(5):670-680.

[38]郑常青,耿志忠,段东,等. 辽北开原地区晚古生代—早中生代混杂岩的厘定及其地质意义[J]. 世界地质,2023,42(3):444-460.

Zheng Changqing,Geng Zhizhong,Duan Dong,et al. Determination and Geological Significance of Late Paleozoic-Early Mesozoic Melanges in Kaiyuan Area,Northern Liaoning Province[J]. World Geology,2023,42(3):444-460.

[39]万渝生,董春艳,任鹏,等.华北克拉通太古宙TTG岩石的时空分布、组成特征及形成演化:综述[J].岩石学报,2017,33(5):1405-1419.

Wan Yusheng,Dong Chunyan,Ren Peng,et al. Spatial and Temporal Distribution,Compositional Characteristics and Formation and Evolution of Archean TTG Rocks in the North China Craton:A Synthesis[J].Acta Petrologica Sinica,2017,33(5):1405-1419.

[40]Zhai M G,Santosh M.The Early Precambrian Odyssey of the North China Craton:A Synoptic Overview[J].Gondwana Research,2011,20 (1):6-25.

[41]Wang W,Cawood P A,Liu S,et al.Cyclic Formation and Stabilization on of Archean Lithosphere by Accretionary Orogenesis:Constraints from TTG and Potassic Granitoids,North China Craton[J].Tectonics,2017,36(9):1724-1742.

[42]石强,李晨,周煜欣,等.华北克拉通北缘孔兹岩带两期深熔石榴花岗岩地球化学特征及其地质意义[J].吉林大学学报(地球科学版),2023,53(4):1090-1116.

Shi Qiang,Li Chen,Zhou Yuxin,et al.Geochemistry and Geological Significance of the Two Episodes of Anatectic Garnet Granites in the Khondalite Belt,Northern Margin of the North China Craton[J].Journal of Jilin University (Earth Science Edition),2023,53(4):1090-1116.

[43]Diwu C R,Sun Y,Guo A L,et al.Crustal Growth in the North China Craton at ~2.5 Ga:Evidence from in Situ Zircon U-Pb Ages,Hf Isotopes and Whole-Rock Geoshemistry of the Dengfeng Complex[J].Gondwana Research,2011,20(1):149-170.

[44]陈斌,李壮,王家林,等.辽东半岛~2.2 Ga岩浆事件及其地质意义[J].吉林大学学报(地球科学版),2016,46(2):303-320.

Chen Bin,Li Zhuang,Wang Jialin,et al.The ~2.2 Ga Magmatic Event in Liaodong Peninsula and Its Geological Significance[J]. Journal of Jilin University (Earth Science Edition),2016,46(2):303-320.

[45]王惠初,陆松年,初航,等.辽阳河栏地区辽河群中变质基性熔岩的锆石U-Pb年龄与形成构造背景[J].吉林大学学报(地球科学版),2011,41(5):1322-1334,1361.

Wang Huichu,Lu Songnian,Chu Hang,et al.Zircon U-Pb Age and Tectonic Setting of Meta-Basalts of Liaohe Group in Helan Area, Liaoyang, Liaoning Province[J].Journal of Jilin University (Earth Science Edition),2011,41(5):1322-1334,1361.

[46]Laurent O,Martin H,Moyen J F,et al.The Diversity and Evolution of Late-Archean Granitoids:Evidence for the Onest of “Modern-Style” Plate Tectonics Between 3.0 and 2.5 Ga[J].Lithos,2014,205:208-235.

[47]段雪鵬,田永飞,王宁,等.辽东地区大石湖沟铜矿化构造背景:来自闪长玢岩锆石成因的指示[J].吉林大学学报(地球科学版),2023,53(1):140-160.

Duan Xuepeng,Tian Yongfei,Wang Ning,et al.Tectonic Setting of Dashihugou Copper Mineralization in Eastern Liaoning Province:Implications from Zircon Genesis of Diorite Porphyrite[J].Journal of Jilin University (Earth Science Edition), 2023,53(1):140-160.

[48]郑培玺.辽西地区台子里花岗质片麻岩锆U-Pb年龄及其地质意义[J].吉林大学学报(地球科学版),2009,39(3):455-460.

Zheng Peixi.Zircon U-Pb Age and Geological Significance of the Taizili Granitic Gneiss in Western Liaoning Province[J].Journal of Jilin University (Earth Science Edition),2009,39(3):455-460.

[49]Bao H,Liu S W,Wang M J,et al.Mesoarchean Geodynamic Regime Evidenced from Diverse Granitoid Rocks in Anshan-Benxi of the North China Craton[J].Lithos,2020,366:105574.

[50]Dong C Y,Wan Y S,Xie H Q,et al.The Mesoarchean Tiejiashan-Gongchangling Potassic Granite in the Anshan-Benxi Area,North China Craton:Origin by Recycling of Paleo to Eoarchean Crust from U-Pb-Nd-Hf-O Isotopic Studies[J].Lithos,2017,290/291:116-135.

[51]Zhou Y Y,Zhao T P,Zhai M G,et al.Petrogenesis of the Archean Tonalite-Trondhjemite-Tranodiorite (TTG) and Tranites in the Lushan Area,Southern Margin of the North China Craton:Implications for Crustal Accretion and Transformation[J].Precambrian Research,2014,255:514-537.

[52]Wang X,Huang X L,Yang F.Revisiting the Lushan-Taihua Complex:New Perspectives on the Late Mesoarchean-Early Neoarchean Crustal Evolution of the Southern North China Craton[J].Precambrian Research,2019,325:132-149.

[53]Wang K,Liu S W,Wang M J,et al. Geochemistry and Zircon U-Pb-Hf Isotopes of the Late Neoarchean Granodiorite-Monzogranite-Quartz Syenite Intrusions in the Northern Liaoning Block,North China Craton:Petrogenesis and Implications for Geodynamic Processes[J].Precambrian Research,2017,295:151-171.

[54]张旗,王焰,李承东,等.花岗岩Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269.

Zhang Qi,Wang Yan,Li Chengdong,et al.Granite Classification on the Basis of Sr and Yb Contents and Its Implications[J].Acta Petrologica Sinica,2006,22 (9):2249-2269.

[55]张旗,金惟俊,李承东,等.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,2010,26 (4):985-1015.

Zhang Qi,Jin Weijun,Li Chengdong,et al.Revisiting the New Classification of Granitic Rocks Based on Whole-Rock Sr and Yb Contents:Index[J].Acta Petrologica Sinica,2010,26 (4):985-1015.

[56]韩宝福.后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J].地学前缘,2007,14(3):64-72.

Han Baofu.Diversity of Post-Collisional Granitoids and Complexity of Tectonic Environment Discrimination[J].Earth Science Frontiers,2007,14(3):64-72.

[57]李三忠,李玺瑶,戴黎明,等.前寒武纪地球动力学(Ⅵ):华北克拉通形成[J].地学前缘,2015,22(6):77-96.

Li Sanzhong,Li Xiyao,Dai Liming,et al.Precambrian Geodynamics(Ⅵ):Formation of North China Craton[J].Earth Science Frontiers,2015,22(6):77-96.

老骥秘书网 https://www.round-online.com

Copyright © 2002-2018 . 老骥秘书网 版权所有

Top