三角形全等说课稿第1篇一、教材:1、教学内容:八年级第十三章第三节”等边三角形”第二课时“含30度角的直角三角形的性质”。2、教材分析:本节内容是在学生学习了等边三角形的性质,由实验几何转向论证几何的下面是小编为大家整理的三角形全等说课稿22篇,供大家参考。
一、教材:
1、教学内容:
八年级第十三章第三节”等边三角形”第二课时“含30度角的直角三角形的性质”。
2、教材分析:
本节内容是在学生学习了等边三角形的性质,由实验几何转向论证几何的基础上,学习含30度角的直角三角形的性质定理。特别是定理证明的添设辅助线的方法相当重要,且难度较太。
3、学习目标:
4、重点:含30度角的直角三角形性质定理的应用。
5、难点:含30度的直角三角形性质定理的证明思想方法。
二、教法与学法:
为了达到教学目标,取得较好的教学效果,这节课的教学采取了情景创设、提出问题、学生活动(观察、实验),教师启发点拨,师生归纳概括和学生掌握的再活动、再应用。最大限度调动学生的积极性。通过定理的证明,激发学生的求知欲,同时通过图形的变换,抓住关键,突出重点。在课堂教学中充分发挥以教师为主导,以学生为主体,以训练为主线的“三主”作用。
通过学生自己动手帮助学生理解定理,便于记忆。让学生通过教师的启发、分析、提问进行观察、对比、归纳、概括,达到共同参与的目的。课堂形式活泼轻松,易于发挥。通过图形的变换,培养学生的抽象能力和创新精神。这样举一反三,易于迁移,引导学生发现并提出新问题,努力摆脱思维定势的影响,进行类比联想,促使学生的思维向多层次、多方位发散。课堂设计从学生的生理、心理特点和思维特征出发,使课堂四十分钟充分发挥其效益。
三、教学步骤:
1、引出定理,加以巩固。
由前面学过的三角形的内角和定理引出今天学习直角三角形的一些性质。提出问题“直角三角形除了具备三角形的性质以外,还具备什么性质?”通过学生共同参与推出定理,并进行练习。本教案把练习第一题作了适当的变动,目的是巩固定理,并为以后学习相似三角形打下基础。
2、启发诱导,证明定理。
针对新教材的要求和特点,通过学生动手操作得出直角三角形斜边上的中线等于它的一半这个命题,借助投影给学生一个旋转的直观认识,并加以论证。教师边启发边提问,层层加深,达到师生共振,分析难点,然后请学生归纳需要证明步骤,最后一起看书本证明过程,得出定理。
3、运用定理,强化训练。
讲解例题5,教师引导学生从已知条件出发,让学生看清题意,数形结合,由学生互相讨论,教师巡视辅导点拨,最后教师归纳总结这个图形,这样,进一步突出了新教材的特点,培养了学生的创新精神。
4、变式练习,拓展思路。
通过强化练习,便于熟练运用定理,并且通过图形的变换,引导学生发现并提出新问题,进行类比联想,促使学生的思维向多层次多方位发散。培养学生的创新精神和创造能力。
一、教材分析
直角三角形的性质是初二年级上半学期第19章第8节的内容,共分为3个课时,一为直角三角形两个锐角互余和斜边上的中线等于斜边的一半两个性质定理;
二为直角三角形30度所对的边等于斜边的一半及其逆定理,三为综合训练。本堂课为第一课时的内容。在此之前学生已经学习过一般三角形的相关性质如内角和性质、外角性质、三边关系以及特殊三角形如等腰三角形和等边三角形的性质和判定,以及三角形全等等足够的知识基础。本课为研究特殊三角形——直角三角形的入门,是以后综合图形证明的一个基础。
二、学生分析
总体来说,绝大多数学生处于中等偏下水平,对几何证明的学习或多或少有些心里障碍,尤其是证题思路的形成,但是仍处于对于新事物好奇的阶段,所以可以通过老师课堂上得有效引导和阶梯是铺垫提示让学生学有所成。
三、教学目标
1、掌握直角三角形两个锐角互余和斜边上的中线等于斜边的一半这两个性质定理,并能初步运用其解决简单的几何问题;
2、经历定理推导过程,体会实验—猜想—论证的完整过程。
3、通过探究直角三角形的性质,培养学生的学习兴趣和严谨的学习态度。
四、教学难点、重点
1、经历“直角三角形斜边上的中线等于斜边的一半”这一性质定理的推导过程
2、直角三角形两个性质定理的简单运用
五、教学设计过程
(一)性质1的引入和训练
1、利用2分钟预备铃学生朗读自己整理的已经学过的有关三角形的知识点;
2、开门见山,提问直角三角形两个锐角的关系,得出性质1:直角三角形两个锐角互余;
重点强调几何书写,让学生了解在证明书写时如何规范应用这个性质
3、性质1的应用,由易入难进行训练,准备习题如下:
1、在直角三角形中,有一个锐角为480,那么另一个锐角度数为
2、等腰直角三角形的一个锐角等于__________
3、如图,在Rt△ABC中,∠ACB=900,CD是斜边AB上的高,
那么图中有几个直角三角形?有几组角互余?有哪些角相等?
第1小题是最简单的应用;
第2小题为后面性质2的推导过程中特殊的直角三角形——等腰直角三角形中斜边上得中线等于斜边的一半打个小基础,而且这也是一个常识知识。在两题的训练中,帮助学生熟悉性质1;
第3小题是课本上得例题,通过他训练学生的思维和规范书写,同时对这个常规的母子三角形进一步加深印象。
(二)性质2的探索和简单应用
首先从等腰直角三角形这一特殊的直角三角形入手,学生容易获得斜边上的中线等于斜边的一半的结论,考虑到班级的部分学生基础并不是很好,所以这里设计了个问题——图中有几个等腰三角形?启发学生得出结论。然后通过提问是否在一半直角三角形中也能获得这个结论,引发学生的思考。然后鼓励学生动手测量实验获得猜想在组织学生讨论引导他们用演绎证明的方法严谨的推导出直角三角形的性质2。这部分的证明是整堂课的难点,需要老师的有效引导和启发,最后性质的得出也让学生感受到从特殊到一般思想方法和实验—猜想—论证的完整定理推导过程。同时通过证明的过程进一步学习添加辅助线的技巧,学会用运动的眼光来看待几何证明问题,如果时间来得及想介绍下同一法的证明方法,为一部分好的学生开阔一下思路。
归纳出定理2后同样给出几何规范书写,强调使用条件有2个,一是直角三角形二是斜边的中线。
然后准备由易到难的习题练习如下:
(1)在直角三角形中,斜边长6,那么该三角形的斜边上的中线长为________.
在直角三角形中,斜边上的中线为6,那么该三角形的斜边长为_________
(2)直角三角形斜边上得中线和高分别是8和5,则这个三角形的面积是_______
(3)在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________.
(变式:在△ABC中,∠ACB=90°,CE是AB边上的中线,若∠A=30°,那么与CE相等的线段有_______________)
第1题是基础训练;
第2题进一步提高思维,知道三角形面积需要知道一边和这边上得高,高已知就需要确定这一边的长,再通过直角三角形斜边上的中线这个条件获得这一边的长从而解决问题,培养学生从题目中分析出有用的信息;
第3题不难,但是没有图形,需要学生自己根据题意画出草图,在几何学习过程中图是最重要的环节之一,而我们的学生对于没有图的题需要自己画图的题存在不小的问题,所以利用这个题训练他们的正确画图能力。
变式把一个锐角改成30度,也是为了下一节中直角三角形中30°的角所对的边和斜边之间数量关系讨论做一个铺垫,起到承上启下的作用。
(三)巩固提高训练
这里通过2个习题进行对于定理2的应用训练,同时关注书写的规范
1、【例2】如图,在△ABC中,AD⊥BC,E、F分别是AB、AC上的中点,且DE=DF.求证:AB=AC
2、已知:如图,BF、CE分别是△ABC的高,N、D分别是EF、BC的中点,分别联接ED、FD。求证(1)ED=FD(2)DNEF
第二题的原题中没有2个小问题,而是直接提问DNEF,这里可根据学生实际的情况考虑是否给出第一小问题作为铺垫。在引导学生进行证明的过程中帮助学生去找题中得已知条件,看有没有直角或垂直的条件,有没有中点的条件,再结合看是不是存在直角三角形斜边上得中线情况。尤其是当图形复杂时要耐得下心来寻找关键的条件。
(四)课堂小结
让学生说说自己这堂课的收获,学生可能对2个定理影响深刻,老师要从分析方法上提点学生注意辅助线的添加方法和图形中找有用的条件的方法
(五)作业布置
不把练习册直接拿来用,而是根据学生的情况进行增减的作业布置,让一般的学生牢牢掌握基础,让好的学生思维获得进一步提高,分层作业的设置尽量考虑所有学生。
(六)作业指导
对于回家作业进行有针对性的简要分析、训练思维,帮助学生加强分析题得能力,同时帮助部分基础比较弱得同学理清思路
附:
19.8(1)作业单
一、任务单上未完成的作业完成
二、练习册上部分习题
1、在直角三角形中,有一个锐角为380,那么另一个锐角度数为
2、在Rt△ABC中,∠C=900,∠A-∠B=300,那么∠A=,∠B=
3、如图,已知△ABC中,∠ACB=90°,CD⊥AB,垂足为点D,点E是边AC的中点,DE=2cm,∠BCD=20°,那么AC=_______cm,∠A=_______°
4、在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________
5、已知:如图,在△ABC中,∠B=∠A,CD⊥BC,CE是边BD上的中线
求证:AC=BD
6、已知:如图,AD、BE相交于点C,AB=AC,EC=ED,M、F、G分别是AE、BC、CD的中点。
求证:(1)AE=2MF
(2)MF=MG
7、已知Rt△ABC和Rt△ADC有公共的斜边AC,点M是AC的中点,点N是BD的中点,求证直线MN垂直平分线段BD
【说明】1、2、4题是两个性质定理的基础训练,第3题结合图形,考察学生对于图形的简单分析能力,利用已知条件和掌握的知识技巧解题。
第5题通过证明线段的倍分问题,培养学生“倒推”的分析能力,通过角的转化,等角对等边等知识的综合运用,同时考察学生对上课复习的如何证明线段倍分关系的方法进行考察。
第6题乍一看图形比较复杂,其实只需要需找到图形中得2个直角三角形即可解决问题,这里需要运用到等腰三角形的三线合一性质的运用,难点在于克服图形复杂造成的无力感,这是很多学生的一个通病,看到图形复杂就先一步在心里上给自己设置障碍,通过此题鼓励学生细心的分析题,用已知条件创造中间结论并结合图形解决问题。
第7题其实是课堂上巩固提高训练部分中第2题的变式,只需要添加2条辅助线就和那一题一样了,考察学生是不是能看透图形的本质已经相关问题的迁移以及辅助线的添加技巧。
我说课的内容选自人教版义务教育课程标准实验教科书四年级数学下册第五单元《三角形》。下面就几个方面谈谈我对教材的理解:
一、对单元主题的认识
“三角形”是本册教材的重点内容,属于第二学段“空间与图形”领域。学生通过第一学段以及四年级上册对空间与图形内容的学习,对三角形已经有了直观的认识,能够从平面图形中分辨出三角形。本单元的教学是要在上述内容基础上,进一步丰富学生对三角形的认识和理解。因此,我认为本册对三角形认识的教学目标与第一学段课标中所规定的“获得对简单平面图形的直观经验”有所不同,落实目标的策略也应有所不同,应“使学生通过观察、操作、推理等手段”,逐步认识三角形。在本单元的教学中,在落实“了解三角形任意两边的和大于第三边”、“三角形内角和是180°;
”等内容的具体目标时,不仅要求学生积极参与各种形式的实践活动,而且要积极引导学生对活动过程和结果进行判断分析、推理思考和抽象概括,让学生在学习知识的过程中提高能力。
二、单元结构分析及教学目标的定位
下面我就以知识树的形式,将本单元的内容结构及各知识点的教学目标向大家做以介绍(幻灯片演示说明):这一单元包括两个知识块:三角形的认识和图形的拼组。三角形的认识分为三角形的特性、三角形的分类、三角形内角和三方面内容,也是本单元的重点教学内容。三角形的特性这一内容要求学生掌握三个知识点:
一是结合生活情境和具体的操作活动,使学生抽象概括出三角形的特征,认识三角形各部分的名称及底和高的含义,学会用字母表示三角形。
二是联系生活实际,让学生了解三角形的稳定性及其应用;
三是创设具体的问题情景,使学生在积极的探索活动中发现“三角形任意两边的和大于第三边”。三角形的分类这一内容主要是让学生在给三角形分类的探索活动中,学会根据角和边的特点将三角形类,能够发现和认识这些三角形的特点并能够辨认和区别它们。三角形内角和这部分内容主要是通过一系列的实验、操作活动,让学生推理归纳出三角形的内角和是180°。
在系统学习了三角形的知识后,教材安排了“图形的拼组”内容。它主要包括两部分内容:一是用三角形拼四边形,目的是通过拼、摆、画等活动,让学生进一步感受三角形的特征及三角形与四边形的联系与区别,感受数学的转化思想。另一个内容是用三角形拼组图案,目的是让学生在图形的拼组、设计活动中进一步发展空间观念和动手操作、探索能力。
三、教学策略的选择
为了突出本单元的教学重点,突破难点,我在教学中选择和运用了运用如下教学策略:
(一)关注学生的已有经验,强调数学知识与现实生活的密切联系。
教学中我注意从学生已有的经验出发,创设丰富多彩的与现实生活联系紧密的情境和动手实验活动,以帮助学生理解数学概念,构建数学知识。例如:对三角形稳定性的教学,我充分利用教材所提供的三角形在生活中应用的直观图,让学生联系生活思考:“哪儿有三角形?它们有什么作用?”然后让学生亲自做一个实验感受三角形的稳定性。这不仅是认识几何形体特征的需要,而且有助于学生切实感受到数学对于解决生活实际问题的价值。
(二)重视实践活动,让学生在探索中获取知识。
“数学学习的过程实际上是数学活动的过程”,学生对图形的认识是在活动中逐步建立起来的。教学时,我从学生的生活实践出发,给予学生从事数学活动的充分的"时间和空间,这主要体现在:概念的形成不直接给出结论,而是提供丰富的动手实践的素材,设计思考性较强的问题,让他们通过观察、操作、有条理的思考和推理、交流等活动,经历从现实空间抽象出几何图形、探索图形性质及其变化规律的过程,从而获得对图形的认识,发展空间观念。例如三角形三边之间的关系、三角形的内角和、三角形与四边形的联系等,均是让学生在操作、探索中发现、形成结论。
(三)促进教学中的数学交流。
教学中我重视为学生创设交流的情境,提供“数学对话”的机会,鼓励学生用耳、用口、用眼、用手去表达自己的思想和接受他人的思想。如教学“三角形任意两边之和大于第三边”时,出示情境图后提出问题:“从小明家到学校有几条路?哪条路最近呢?为什么?”引导学生思考、交流。由于学生还未正式学习三角形边的关系知识,因此在交流时,要鼓励学生结合生活经验谈看法,用自己的话来描述,教师不要作过多的评论,以保护学生学习的积极性。接着组织学生以小组合作学习的方式进行实验、探究。探究的重点放在引导学生讨论“第(2)、(3)组纸条为什么摆不成三角形?”然后请学生交流自己在探究中的发现,形成结论。最后用自己的发现解释引入中的问题“为什么小明上学走中间这条路最近”。这样的交流活动有助于培养学生的参与意识,不断提高他们的思维水平。
(四)注重教具、学具和现代教学手段的运用,加强教学的直观性。
几何初步知识无论是线、面、体的特征还是图形的特征、性质,对于小学生来说,都比较抽象。要解决数学的抽象性与小学生形象性思维之间的矛盾,就要加强教学的直观性。而本单元三角形所具有的鲜明的直观性为各种教学手段的运用提供了广阔的空间。因此,教学时我本着切合实际,易操作而有实效的原则,利用各种教具、学具和现代教学技术,使学生认识和探索图形的过程更具有趣味性和挑战性,空间观念和实践能力得到进一步发展。
我设计的说课共分四个方面:
一、教材的分析与处理
1、教材的地位与作用
从本课开始,将向学生重点渗透图形变换的数学思想,使学生初步掌握推理论证的方法,有利于培养学生逻辑推理能力。教材通过一个思考活动,使学生体会将一个三角形进行变换后形成的新图形与原图形是全等形。我将此内容进行了加深和拓展
2、教学目标
知识与技能:了解全等三角形的相关概念,性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。
过程与方法:经历图形的平移,翻折,旋转等变换的过程,体会探索问题的方法。
情感态度与价值观:通过合作交流,增强团队意识,体验成功的喜悦。
3、教学重点与难点
重点:全等三角形相关概念,性质及全等三角形对应元素的寻找。
难点:能够准确地辨认全等三角形中的对应元素
二、教学方法与教学手段
教学方法:本节课主要采用探究体验式创新教学法。
教学手段:采用多媒体辅助教学,促进学生自主学习,提高效率。
三、教学过程设计
环节一激情引趣
拼图游戏:
通过动手拼图,学生能够发现这几组图形能够完全重合,从而得到全等形的定义。此环节的设计,利用学生原有知识经验,展开数学教学,激发了学生的学习兴趣,提高了学生观察,分析,抽象,概括的能力。
环节二实践感悟
活动一
打开你手中的材料袋,找出其中的全等形,并说明理由。要求同桌合作完成学生亲身体验两个图形完全重合的过程,能够发现①与⑩,②与⑥,⑦与⒁⑿与⒀分别能够完全重合,而对于④与⑥,⑧与⒀教师留给学生充分的时间验证,通过再次验证,能够发现④与⑥,⑧与⒀是分别不能完全重合。
通过动手实践,使学生更加明确了全等形的判别条件,培养了学生严谨求实的学习态度。
在此基础上,自然引出全等三角形,从而引出课题。
并通过观察两个三角形的变换过程,了解全等三角形的对应元素,并由教师介绍全等三角形的表示方法。
进一步提出:这两个全等三角形的对应边和对应角分别存在怎样的数量关系呢
由此得到全等三角形的性质,接着由师生共同得出全等三角形性质的符号语言:
∵△ABC≌△DEF
∴ AB= DE,BC=EF,AC= DF
∠A=∠D,∠B=∠E,∠C=∠F
此问题的设计,让学生在做中发现,做中感悟,做中理解,做中解决,使学生经历,感受,体验知识的形成过程,培养了学生乐于动手,勤于动手的意识和习惯,切实提高了学生的动手能力和实践能力。
环节三探究说理
活动二
利用两个全等三角形学具,先保持完全重合状态,再使一个三角形不动,将另一个三角形进行平移,翻折,旋转,探究以下图形的形成过程。
要求四人为一小组合作交流的形式进行。
在讨论过程中,教师以合作者的身份深入到小组中,与学生交流,了解学生的探究进程并给予适当点拨。
各个小组在黑板上演示图形的形成过程。
有以下几种:
个别学生发现第三个图形有另一种形成过程,此时教师尊重学生的富有个性的学习表现,及时捕捉问题的症结所在,进行巧妙地引导,鼓励,问疑,由此教学变得更加生动与鲜活,获得了更大的教学生成效果学生在汇报的过程中,展示不同的形成过程。接着用微机再现图形形成的过程,并使学生了解利用两个全等三角形学具还可以形成一些其他的图形,拓拓宽学生的视野,有利于学生认识数学的本质与作用,并从中体会到数学的美,这样设计,学生能够体验和感悟图形之间的联系和运动变换的过程中所体现的美,并为寻找全等三角形的对应元素作好准备,接着利用这几组图形寻找全等三角形的对应元素,并体会寻找对应元素的方法。
学生从运动变化的角度发现:
重合的边是对应边,重合的角是对应角。例:
也会从边,角的特点来找:
如:全等三角形中例:
有公共边的,公共边是对应边;
有公共角的,公共角是对应角;
有对顶角的,对顶角是对应角。
一对最长(短)的边是对应边;
一对最大(小)的角是对应角。
对应边所夹的角是对应角;
对应角所对的边是对应边。
无论从哪个角度,教师都对学生的成果给与充分的肯定,为将学生的认识由感性上升到理性,使学生对全等三角形对应元素的方法进行分类和总结,从而得到特殊图形寻找对应元素的方法。
此难点的突破,力求发挥自主学习的优越性,放手让学生去探索,在生生互动氛围中使学生思维的灵活性和创造性得到发展。
环节四应用拓展
为了使学生能够结合基本图形,灵活地运用本节课所学知识解决问题,我设计了一组不同层次的习题,力争让不同的学生在数学上得到不同的发展。
1、如图1,△ABC≌△ADC,AB和AD,BC和DC是对应边,则______。(填数量关系)
2、如图2,△ABC≌△EDC,B和D,A和E是对应点,则_____。(填数量关系)
3、如图3,△ABC≌△EFD,∠ACB和∠EDF是对应角,AB与EF是对应边,则图中相等的边有_______。
学生能够叙述发现的结论,总结解决问题的方法,从中体会到理解和掌握全等三角形性质是证明角相等,线段相等的主要途径,通过以上问题的解决,使学生抓住问题的实质,从而达到巩固双基,举一反三的目的。
环节五体验收获
此环节采用师生互动,共同反思,总结,补充的方式进行。小结如下:
学习方式自主,探究,合作学习
探索流程图
环节六拓展延伸
为让学生更好的体会"学数学,用数学"的理念,布置了研究性作业,利用两个全等三角形,进行平移,翻折,旋转,结合得到特殊位置的图形,尝试寻找对应元素。
四、教法特点以及预期效果分析
1、教法特点
本节课采用研究体验式创新教学法,辅之以其它教学法,在探索新知过程中设计两个实践活动,有利于学生主动地进行观察,猜想,验证,推理,交流等数学活动,促使学生在自主探索的过程中形成自己的认知体系,在与人交流的过程中逐渐完善已有的认知体系。
2、预期效果分析
在学生体会全等形的定义时,学生可能说的不够准确,对于这些说法,教师不急于评价,而是用具有启发性的语言进行引导,由学生相互订正,补充得出:形状大小完全相同;
在学生表述全等三角形对应元素的寻找方法时,可能有表达的不是很准确的地方,此时由学生相互补充,完善,教师给予适当的点拨。考虑到已有的知识经验,对学生的要求不要过高,要充分地尊重学生,增强学生探究的欲望,为学生提供合作交流的平台;
在学生汇报图形形成的过程中,对于复杂图形的形成过程,学生可能有表达不准或理解有误的地方,此时通过生生质疑的方式加以解决,如果学生解决不了,此时我将利用微机或教具演示来消除学生的各种思维障碍。
一、说教材
全等三角形是八年级上册人教版数学教材第十一章的教学内容。本章是在学过了线段、角、相交线、平行线以及三角形的有关知识以及在七年级教材中的一些简单的说理内容之后来学习的,通过本章的学习,可以丰富和加深学生对已学图形的认识,同时为学习其它图形知识打好基础。
根据课程标准,确定本节课的目标为:
1、知道什么是全等形,全等三角形以及全等三角形对应的元素;
2、能用符号正确地表示两个三角形全等;
3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角;
4、知道全等三角形的性质和判定,并能用其解决简单的问题要求学生会确定全等三角形的对应元素及对全等三角形性质的理解;
5、通过感受全等三角形的对应美,激发热爱科学勇于探索的精神。通过文字阅读与图形阅读,构建数学知识,体验获取数学知识的过程,培养学生勇于创新,多方位审视问题的创造技巧。
二、说教法
本节课以学生练习为主,教室归纳总结为辅的教学方法。教师一边用幻灯片演示讲解,一边让学生动手、动脑,充分调动学生的积极性和主动性,有机融合各种教法于一体,做到步步有序,环环相扣,不断引导学生动手、动口、动脑。积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。
1、教学生观察、归纳的方法
为了适应学生的认识思维发展水平,有序的引导学生观察、分析,得出结论,让学生通过观察——认识——实践——再认识,完成认识上的飞跃。
2、通过设疑,启发学生思考
根据练习情况设疑引导,重在让学生理解全等三角形的概念,展开学生的思维。
三、说学法
学生在学习过程中可能难于理解全等三角形的对应顶点、对应边、对应角。教师要做到教法与指导学习的学法有机统一。通过幻灯片演示,学生用学具操作体会,最终完成学习过程,达到教学目标。
1、看听结合,形成表象。看教师演示,听教师讲解,形成表象。
2、手脑结合,自主探究,学生为主体,充分使用学具,动手操作体会全等三角形。
四、说教学流程
本节课的教学过程是:首先,展示教师制作的一些图案,引导学生读图,激发学生兴趣,从图中去发现有形状与大小完全相同的图形。然后教师安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。其次,通过阅读法让学生找出全等形和全等三角形的概念。然后,教师随即演示一个三角形经平移,翻折,旋转后构成的两个三角形全等。通过教具演示让学生体会对应顶点、对应边、对应角的概念,并以找朋友的形式练习时指出对应顶点、对应边、对应角,加强对对应元素的熟练程度。此时给出全等三角形的表示方法,提示对应顶点,写在对应的位置,然后再给出用全等符号表示全等三角形练习,加强对知识的巩固,再给出练习判断哪一种表示全等三角形的方法正确,通过对图形及文字语言的综合阅读,由此去理解“对应顶点写在对应的位置上”的含义。再次,让学生阐述全等三角形的性质和判定。并通过练习来理解全等三角形的性质和判定,并渗透符号语言推理。最后教师小结,这节课我们知道了什么是全等形、全等三角形,学会了用全等符号表示全等三角形,会用全等三角形的性质和判定解决一些简单的实际问题。
一、教材分析
1.教材的地位和作用
本节课内容为全等三角形,是人教版数学八年级上册第十一章《全等三角形》的内容。它是继线段、角、相交线与平行线及三角形有关知识之后出现的,通过对本节的学习,可以丰富、加深学生对已知图形的认识,同时为后面学习全等三角形的条件、等腰三角形与轴对称作好铺垫,起着承上启下的作用。
2.教学的目标和要求
根据大纲要求及所教学生的实际情况,本节课制定了知识、能力、情感三方面的目标。
(一)知识目标:
(1)了解全等三角形的概念,会用平移、旋转、翻折等方法判定两个图形是否全等;
(2)知道全等三角形的有关概念,能在全等三角形中正确地找出对应顶点、对应边、对应角;
(3)能熟练地说出全等三角形的性质和判定,并会运用。
(二)能力目标:
(1)通过全等三角形有关概念的学习,提高学生数学概念的辨析能力;
(2)通过找出全等三角形的对应元素,培养学生的识图能力。
(3)通过学生练习,提高学生几何证题能力。
(三)情感目标:
通过各种真实、贴近生活的素材和问题情景,激发学生学习数学的热情和兴趣,培养学生勇于创新,多方位审视问题的创造技巧。
3.教学重点:
全等三角形的性质、判定及其应用。
4.教学难点:
(1)能在全等三角形的变换中准确找到对应边、对应角。
解决方法:利用动画的形式让学生直观的识别具体的图形和知识点从而突出和掌握重点。在对应边、对应角的识别查找中运用动画的展示,使学生能直观认识该知识点,化难为易,从而突破该难点。
(2)判定条件的对应性及顺序性。
二、教学方法
本节课以学生练习,老师点拨归纳等教学方法。教师一边用多媒体演示讲解,一边让学生在观察的基础上动手、动脑,充分调动学生的积极性和主动性。只有学生积极参与教学过程,才能圆满完成教学任务,收到良好的教学效果。同时引导学生寻找题目的隐含条件,启发学生发现问题,思考问题,培养学生的逻辑思维能力,推理论证能力,分析问题解决问题的能力,逐步设疑,创设问题情景,搭建参与平台,让学生积极参与讨论,肯定成绩,及时表扬,使学生感受成功的喜悦,提高他们学习的兴趣和学习的积极性。
一、教材分析
我说课的内容是华东师大版义务教育课程标准实验教科书,数学九年级上册第二十四章图形的全等的第二节全等三角形的识别的第四课时——利用角边角、角角边说明两个三角形全等。
《数学课程标准》对本节的要求是:经历三角形全等识别方法的探索过程,并会运用这些方法识别三角形全等。
本章是在前面学习了相似三角形、三角形的平移、旋转、轴对称变换基础上的学习。图形的全等在生产、生活、科学技术方面有广泛应用。本章第一节图形的全等和第二节全等三角形的识别两部分是一个整体。第一节给出一般概念,第二节是对特殊图形的深入研究。全等三角形的识别既是前面所学知识的延伸与拓展,又是后继学习的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。本节课在探索ASA、AAS全等三角形的识别方法过程中渗透了分类及转化的数学思想,掌握好全等三角形的识别方法这个有效的工具,就找到了联系很多初中几何图形之间的纽带,找到了解决很多综合型问题的钥匙。
基于对教材的分析,我确定了本节课的教学重点是:探索全等三角形的识别方法,会运用ASA、AAS方法识别三角形全等。
二、学情分析
从学生学习的心理基础和认知特点来说:学生已经学习过相似三角形和三角形的几种全等变换,特别是经过SSS、SAS的操作探究之后已经有了一定的数学化能力,能进行数学建模和简单的解释应用。而且初三学生已经从感性认识过渡向理性认识,有一定的合情推理能力。但学生在具体问题,特别是复杂的图形中综合运用多种方法来识别全等三角形、构造全等三角形,可能会产生一定的障碍。
因此我对本节课的设计是采用自主探究与合作交流相结合的模式,通过操作探究、开放性问题等各种数学活动,让学生独立思考,合作交流,从而引导其自主学习。特别是在练习的配置上,为了防止学生对纷繁的图形产生杂乱的感觉,所有的练习都是在例题图形的基础上做的变式,使学生更易于理解、接受,在变化中寻求统一,在变化中寻求发展。
基于对学情的分析,我确定了本节课的教学难点是:综合运用多种方法识别三角形全等。
三、教学目标
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:
1、能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。
2、会运用ASA、AAS识别三角形全等,能在探索及说理过程中进行有条理的思考,发展合情推理能力,渗透分类和转化的数学思想。
3、能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。
四、教学手段
本节课借助多媒体设备,通过设计恰当的问题情境,引导学生主动参与探究,采用剪刀、卡纸、刻度尺、量角器等学具,进行操作确认、合作交流。并利用几何画板课件,对习题图形进行变式,在练习上设计了大量开放性问题,引发学生深层思考,使学生经历操作确认—建立模型—解释应用——拓展反思过程,在原有基础上数学能力得到提高。
五、教学过程
本节课我设计了四个活动:
活动一、创设情境、引出新知
首先放一组图片,介绍金字塔的背景。
师生活动:教师通过金字塔这个对于学生神秘而又感兴趣的问题情境,激发学生的探究欲望,为本节课的继续探索做好准备。
问题1:经过科学家测量,这个金字塔的四个侧面的三角形是全等的,你认为测量哪些数据能方便而快捷的识别这些三角形是全等的呢?
师生活动:教师提出问题(1),学生可以畅所欲言的来回答,提出猜想。
教学效果预估与对策:如果学生猜想的不准确,教师可以提出测量三角形与地面相交的一边与夹这边的两角,是否可行。
设计意图:学生提出猜想的同时明确本节课的学习任务。
问题2:具备两角一边分别对应相等的两个三角形是否全等呢?这就是我们本节课要来探究的内容。
设计意图:引出新课
活动二、操作探究、得出结论
问题1:已知一个三角形的两角及一边,有几种可能的情况?
师生活动:在学生回答出两角夹一边、两角及其中一角的对边后,提出问题2。
设计意图:渗透分类的数学思想。
问题2:针对第一种情况,你有什么办法确认这种情况下的两个三角形是否全等呢?4人一个小组进行实验操作,大家要注意分工合作。
师生活动:这个问题设计的比较开放,教师提示可使用刻度尺、量角器、剪刀、卡纸等物品。学生以小组为单位自我确定方案,合作交流、比较确认。
教学效果预估与对策:这个环节是突破重点的重要过程,因此要给学生充分的时间去亲身体验、去感受。这个环节以学生画图、剪纸为主线展开探究活动,注重ASA条件的发生过程。在此过程中,教师应关注(1)学生在操作过程中的参与意识,合作交流能力。(2)学生是否能提出探索方案,并通过观察、比较得到结论。
设计意图:培养学生合作交流意识,提高学生探究问题的能力。同时体现了教学目标中的“能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。”
问题3:通过刚才大家的操作探究得到了什么结论呢?
师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。
教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够得出结论,如果不全面教师要耐心加以引导。
问题4:对于第二种情况,你怎样来确认这两个三角形是否全等呢?
设计意图:让学生调动思维,认识到除了可以仍然通过操作来确认,还可以通过三角形内角和定理将两角及其一角的对边转化成两角夹边的情况,用推理的方法得到。也体现了教学目标中渗透转化的数学思想。
问题5:通过同学们的推理又得到了满足什么条件的两个三角形是全等的呢?
师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。并且师生共同总结出具有两角一边对应相等的两个三角形是全等的,无论这边是夹边还是某一角的对边。
活动三、解释应用,拓展延伸
问题1:现在同学们能来解决金字塔的问题了吗?
师生活动:师生共同解决引例中的问题,破解学生心中的疑团。
教学效果预估与对策:预计学生能比较容易的解决这个问题。
设计意图:使学生进一步体会到全等的实际应用价值,树立知识来源于实践又用于实践的观念。
问题2:到目前为止,我们学习了哪些全等三角形的识别方法?
设计意图:在教学中及时总结,目的是随时巩固新知识,完善学生的认知结构。并提醒学生在具体问题中要注意选择合适、便捷的方法。
练习:填空
(1)已知EB=EC,∠B=∠C,△EBD≌△ECA的根据是()
(2)已知BD=CA,∠B=∠C,△EBD≌△ECA的根据是()
(3)已知EB=EC,ED=EA,△EBD≌△ECA的根据是()
设计意图:加深学生对本节课知识的掌握并提示学生在寻找全等条件时,要注意挖掘题中的隐含条件。体现了教学目标中的“会运用ASA、AAS识别三角形全等”。
例:如图,∠ABC=∠DCB,
∠1=∠2,试说明△ABC≌△DCB、
师生活动:例题中的已知条件比较清晰、明了,难度不大,可以让一名学生板演,其余学生共同评价。
问题:在这两个三角形全等的基础上,你还能得到什么结论?
教学效果预估与对策:学生可能会得到线段相等、角相等、三角形全等等结论,教师要给予充分的肯定。
设计意图:开放性结论的设置可以引起学生的多种想法和深层思考。同时强调全等的作用,全等可以作为说明两个角相等、两条线段相等的重要途径。也体现了“能在探索及说理过程中进行有条理的思考,发展合情推理能力。”的教学目标。
例题变式1(条件不变,用几何画板进行图形的变式)
问题1:条件不变∠3=∠4,∠1=∠2,△ABC≌△DCB吗?
师生活动:教师运用几何画板,将例题中的点D沿BC翻折下来,学生思考,口述。
问题2:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?
师生活动:教师运用几何画板,将变式(1)中的一个三角形进行平移。
问题3:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?
师生活动:教师运用几何画板,将变式(2)中的一个三角形进行旋转。
设计意图:经过这组题目,既对利用ASA、AAS方法识别三角形全等加以巩固,突出了本节课的重点,也使学生对于平移、旋转、轴对称变换和全等的关系有更进一步的理解。
例题变式2:
已知:EB=EC,点A在BE上,点D在CE上,给CA和BD赋予什么条件能使△ABC≌△DCB或使△EBD≌△ECA?
师生活动:这个练习采用了对问题的条件进行开放,以小组比赛的方式进行。
教学效果预估与对策:学生可能添加的条件是多种多样的,如:CA和BD是三角形的两条中线、高、角平分线等。在此环节中,教师应关注以下三点:
(1)学生对本节所学的ASA、AAS的理解程度。
(2)学生是否能顺利挖掘公共角、公共边这些隐含条件。
(3)是否有出现添加CA=BD,然后运用“SSA”来说明两个三角形全等这样的错误。
设计意图:这个习题的设置能培养学生观察图形和分析能力,同时也体现了教学目标中的“能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验数学的价值。”
变式3:探究升级
已知:EB=EC,点A在BE上,点D在EC的延长线上,AD交BC于F,说明点F是AD的中点、
设计意图:这道题有一定难度,用于满足不同层次学生的学习需求。通过作不同的辅助线,构造全等三角形或相似三角形来解决问题。这道题综合运用了本节和以前所学的知识,既可以培养学生的发散思维能力和创新意识,又使学生构造出比较完整的知识体系,体现了解决问题策略的多样性的教学目标。可以给学生一定的讨论时间,使他们的思维碰撞、思维互补,更大激发学生的积极性。没有完成的部分可以作为课下研究的课题,调动学生的研究兴趣。
活动4总结反思,布置作业
我会以采访的形式提出两个问题:
1、通过本课的学习,你学到了哪些新的知识?
2、在学习这些知识的过程中,你的经验与教训是什么?
师生活动:教师提出问题,学生回答,互相补充。
教学效果预估与对策:预计学生能够概括出本节知识,总结出经验和教训,并有所收获。教师要加以引导,师生之间相互完善。
设计意图:通过第一个问题,学生可以回顾出本节课所学到的知识;
通过第二个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。
布置作业:
必做P91—4、5题。
选做用多种方法完成(探究升级)思考题。
设计意图:分层布置作业,使学生在原有的基础上都能得到提高。
点评:本稿是汤琦老师参加xxxx年辽宁省初中数学学科优秀课观摩评比活动获得一等奖的说课稿,她在教学内容、教学目标、学情分析和教学过程设计上作了较详细地说明,尤其是在学情分析和教学过程设计上把握到位,较好的体现了说课的基本要求。
在学情分析中,根据自己的教学经验、数学内在的逻辑关系以及思维发展理论,对本课内容在教与学中可能遇到的障碍进行预测,并对出现障碍的原因进行分析,做到言之有物,以具体数学内容为载体进行说明。
在教学过程设计中,做到与设定的教学目标相呼应,并在每一个问题后,都写出了问题的师生活动、设计意图、教学效果预估及对策,如问题3的教学效果预估与对策是在预知多数学生在经历了上述的探索过程后能够得出的结论,如果不全面教师要耐心加以引导。
一、 教材分析
1. 教材的地位和作用
华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。
因此他的教育教学价值就具体体现在如下三维目标中:
知识和技能目标:能说出勾股定理,并能应用其进行简单的计算和实际应用。
过程和方法目标:经历观察——猜想——归纳——验证的教学发展过程,发展合情推理的能力,体会数形结合、数学建模和由特殊到一般的数学思想。
情感与态度目标:通过对勾股定理历史的了解和实际应用,体会勾股定理的文化价值,同时增强他们爱国主义情感。通过获得成功的经验和克服困难的经历,增进数学学习的信心。
由于八年级的学生具有一定分析能力,但活动经验不足,所以
本节课教学重点:对直角三角形三边关系的探究
教学难点:对直角三角形三边关系的探究及用割补法求正方形的面积。
二、教法学法分析:
要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法:
先从学生熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生自己的课堂。
学法:我想通过“操作+思考”这样方式,有效地让学生在动手、动脑、自主探究与合作交流中来发现新知,同时让学生感悟到:学习任何知识的最好方法就是自己去探究。
三、 教学程序设计
1. 情境创设,以趣引新
以汶川地震为背景,从小小消防员引入,如图,在震后重建中一根木制旗杆开裂,消防员决定从断裂处将旗杆折断,现要划出一个安全警戒区域,如果你是消防员,你能确定这个安全区域的半径至少是多少米吗?
从四川地震引入,激发学生的爱国热情,而问题的设计具有一定的挑战性,目的是激发学生的探究欲望,和学习兴趣,兴趣是学生学习的源动力,让学生带着问题进入课堂,教师引导学生将实际问题转化为数学问题(数学建模思想),也就是在直角三角形中已知一条直角边与一条斜边,求另一条直角边的问题。——点出课题“直角三角形三边的关系”。
这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,同时也体现了知识的发生过程,而且解决问题的过程本身也是一个数学化的过程。
2.实践探究,猜想归纳(这是突破难点的重要环节)
在这里我设计了“试一试”、想一想、做一做、议一议四个环节,
1.试一试 初步感知
同桌两位同学合作,一位同学测量你的两块直角三角尺的三边长度,另一位同学将各边的长度填入活动讲义上的表中,并讨论、猜想直角三角形三边具有怎样的关系?
通过试一试培养了学生动手操作能力及合作探究能力,第二问的结论比较开放,所以也培养了学生开放思维的能力,通过上述尝试,除了初步感受三边关系外也增强了学生求知的欲望及主动探索的意识。
2. 想一想 深入探究
① 我们把其中一块等腰直角三角形拿出来,放到网格中,分别以各边向外作正方形,就形成了书P48/图 14.11
问:你能得出这三个正方形面积吗?
P、Q面积比较简单,在回答R的面积时,可引导学生用多种方法,可分成4个全等的等腰直角三角形,也可用大正方形减去四个直角三角形等,为后面求大正方形的面积作好铺垫。
教师在黑板上设计板书SP、SQ、Sr 填入相应数据,并让学生通过观察数据,猜想面积关系SP + SQ = SR,再利用正方形面积与直角边的关系,猜想边关系AC2+BC2=AB2
这样做有利与于学生发散思维,参与探索,感受数学学习的过程,感受数与形的和谐。
② 等腰直角三角形具有这样的三边关系?那么一般直角三角形是否也具有这样的三边关系呢?(我们把一般直角三角形也放入网格中进行探索)
我设计这样一组问题(把问题抛向学生)
A下面我们如何操作?(向外作正方形)
B为什么要这么做?(用正方形面积的关系来探究直角三角形边长的关系)这两个问题的设置,点出了探索的本质,从而让学生在理解的基础上实践,实践的过程中思考,增强了学生探索的主动性。
问:向外作正方形后,你能识别出P、Q、R的面积吗?
求以AC为边的大正方形的面积对学生来说是很困难的(也是本课的难点),定会将学生的思维推向边缘,此刻我们应该给学生充足的时间自己探究,操作,让学生在活动纸上试一试。
然后让学生自己在实物投影仪上表述自己的成果,可增加学生的语言组织能力,增强学生自信心及增加学生学习数学的兴趣。
求面积的方法有割的方法、补的方法,先割再平移或旋转的方法等,教师在讲述方法过程中应注意引导学生,我们都是把在网格中不能直接求的面积转化为能直接求的面积——转化思想。
求面积可先由学生操作,再由教师电脑演示,或用剪一剪,拼一拼的方法,这样设计不仅有利于突破本节课难点,,也让学生分析问题和解决问题的能力在无形中得到提高。
那么是不是你发现的这一结论对所有直角三角形都适用呢?所以我设计了:
③做一做 验证猜想,
在方格图中用三角尺画出两条直角边分别为5CM、12CM的直角三角形,用刻度尺量出斜边长,并验证上述关系对这个直角三角形是否成立;
再回到开始直角三角板测量的数据进行验证,
通过2次验证过程,让学生进一步证实了结论的正确性又有利于培养学生动手操作能力和严谨、科学的学习态度。
④议一议 得出结论
让学生通过前面得出的结论、数据,并相互讨论,用文字语言来概括一般结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用。
剖析概念、讲解注意点、书写符号语言,因为将文字语言转化为数学语言是学习数学的一项基本能力,接着向学生介绍勾股弦的含义,最后向学生介绍古今中外对勾股定理的研究,培养学生的爱国主义精神。
至此,学生通过以上四个环节,层层递进,符合学生的认知规律,在做中学,在学中做,当然也自然而然突破了本节课的重点与难点,总之,我们通过对等腰直角三角形三边关系的研究,再到一般直角三角形三边关系的研究,再到验证的过程,体现了从特殊到一般的思想方法,让学生经历了探究勾股定理的过程,使学生在长知识的过程中又长了能力。同时过程与方法的目标也得到了有效的落实。
3.尝试练习,应用定理。
学以致用
我设计的第一个例题是对勾股定理的初步应用 ,已知直角三角形的两条直角边,求第三边,(变式:已知一条直角边与斜边,求另一条直角边)
本题的关键要分清直角边与斜边,这时我们借助图形(体现数形结合),题中的变化不需要学生重新做,只需让学生看出只要改变什么即可?从而让学生自己总结出应用勾股定理只需知道其中任意两边就可求出第三边。
练习,书本P51/练习1
让学生对本节课的知识进行最基本的运用,体现以书本为主,也为下节课作准备。
由于生活中经常用到勾股定理所以设计了:
生活中的数学环节
引用书P50/例1
意图:培养学生解决实际问题的能力,关键是把实际问题转化为数学问题,建立数学模型,让学生体会到数学来源于生活并应用于生活。
在前一题的基础上我们解决引入中的“小小消防员问题”,前呼后应,学生从中体会到成功的喜悦,构造学生积极心理场,并进一步体会勾股定理在实际生活的应用。
介绍国际数学大会会标
既增强学生的爱国热情,也点到了对勾股定理的证明要在下节课学习,起到了一个知识的延续性作用,同时增强了学生课后学习的热情。
4.小结反思,课堂收获
学生自己总结,教师点拨。主要从三方面:
1.知识方面 勾股定理及注意点,
2.获得新知识的途径
3.数学思想方法:数形结合、转化、一般到特殊等。
5.作业
1.P51/练习1、2
2.上网查询勾股定理有关知识。
一方面,巩固勾股定理,另一方面增加学生课外学习的能力。
四、教学设计说明:
1.根据学生知识结构,我采用的教学流程是
提出问题——实验操作——归纳验证——问题解决——课堂收获——布置作业六部分,这一流程体现了知识发生,形成、发展的过程,探索定理,采用面积法,引导学生利用实验由特殊到一般的方法对直角三角形三边关系的研究,,这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对学生的终身发展也有一定的作用。
2.本课意在创设愉悦和谐的乐学气氛,建立平等、民主、和谐的师生关系,加强师生间的合作,营造一种学生敢想、敢说、敢问的课堂气氛,构造了学生的积极心理场。
尊敬的各位领导、教育同仁:
大家好:我来自于北安管理局龙门农场中学。
今天,我就我们团队《三角形全等的判定(二)》就是用SAS的方法判定两个三角形全等这一节课的制作和使用向大家做一下说明,希望能和大家共勉!
一、设计的意图:
现在教学中我们使用的是新教材,新教材向我们提供的是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。
二、的作用:
多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。
三、效果预测:
我们的制作采用当今操作比较简单,应用比较广,省时、省力的POWERPORT软件,该软件动感也比较强,是非常易于操作的一个软件平台。
首先,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。
接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。
同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。
在的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。
四、的制作力求创新:
我们对这节课的制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到使用与课堂教学的完美结合。同时,我们并没有完全依赖于教学,还是以教材为主线,以为辅的教学理念充实课堂教学。
以上就是我们团队的制作的相关信息,敬请各位专家、老师提出宝贵意见。
谢谢大家!
尊敬的各位领导、同仁:
你们好
我叫蔺娟,来自西安市文景中学,我说课的内容是北师大版七年级下册第四章第五节《利用全等三角形测距离》, 我今天将从说教材,说教学方法,说教学过程,说教学评价三个方面对本节课进行说课。
一、说教材
在本章前几节学生已经掌握全等三角形的定义,性质及判定等知识,本节课是利用所探求的三角形全等的条件“边边边”, “角边角”,“角角边”, “边角边”来测距离。根据新课标和本节课的内容特点我确定以下教学目标:
大目标:培养与发展学生的空间观念,想象能力及逻辑推理能力。
小目标:
1、能利用三角形的全等解决实际问题,体会数学与实际生活的联系。2、通过生动、有趣、现实的例子激发学生的兴趣,引发他们去思考,并能在利用三角形全等解决实际问题的过程中进行有条理的思考和表达。
教学重点:能利用三角形的全等知识解决实际问题。
教学难点:能利用三角形的全等知识解决实际问题。
二、 说教学方法
本节课运用EEPO有效教育的教学模式,采用平台互动加要素组合的课型方式,搭建了倒置性平台和标准性平台。通过合作探究,讨论交流,培养学生积极思考,勇于探索的精神。
三、说教学过程
为了实现本节的教学目标,突破重难点。我们设计了以下的教学环节。
环节一、复习全等三角形的有关知识,建立知识框架:(构建倒置性平台))
(1)确定本节关键项:全等三角形。教师出示开放性素材:“你知道全等三角形的哪些知识?”,学生先独立思考,在微卡写3-5个。这个环节使学生的学习处于开放性状态,开拓了学生的思维。
(2)交互。四人组交互,顺时针浏览各自微卡上的内容,相互补充并整理在小卡上,并随机抽取1-2人进行成果汇报,从而防止学生假想,把“想”落到实处,师生利用气泡图共同整理形成多向度标准性平台。通过生生交互,师生交互使向度得到增加,梯度得以体现,强化了关键项。
环节二、运用全等三角形的判定及性质解决实际问题。(搭建标准性平台,攀升了强化次数。)
(1)教师出示多向度应用题目,学生先独立思考1分钟,然后6人小组讨论并将设计方案及解决过程大卡展示。在全等三角形应用多向度平台的搭建过程中,学生展示出了丰富多彩的设计方案,通过单元组合作从不同的角度得出不同的测量方法。使学生理解透彻明白。
(2)由2-3组代表发言。这一环节实现了充分的生生交互,充分的发挥人力资源;学生个人的信息量可以得到扩张,
(3)老师精讲、补讲。若学生没有挖掘出深度,老师要启发学生,以完成教学目标。
环节三:畅所欲言,浅谈收获
请学生谈自己学习过程中的收获,通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识,回味成功的喜悦。
四、说教学评价
在实践中我打算在课堂上从以下几个方面进行评价:
1、评价在学习中各种能力〈如语言表达、想象能力、动手能力、思维能力等〉的发展情况,采用击掌,点赞及鼓励的方式。
2、评价学习过程中的创新表现及课堂中的生成性问题,及时的给予鼓励。
3、在学习过程中采用学生互评,自评的方式,充分发挥学生的自主性与能动性。
我的说课到此结束,谢谢大家。
第一方面:教材分析
1、本节的地位作用
《解直角三角形》,是前面学过的相似及函数问题的延续和综合应用,同时也是高中继续学习解斜三角形的重要预备知识。它的学习还蕴含着数学建模和转化化归的数学思想,所以,本节内容无论在本单元,还是整个初中教材甚至中考中都具有重要的地位。
2、 学习目标
由于本节课是第一课时,主要是使学生理解直角三角形的边角关系,并能运用关系解直角三角形和与之相关的实际问题,所以我参考课标提出的阶段性要求,确立本节的教学目标是:
(1)会根据直角三角形已知元素,解直角三角形。
(2)通过对解直角三角形的学习,我们能感知未知元素与已知元素的关系,体会知识点之间的内在联系。
(3) 培养学生问题意识,渗透转化思想和数学建模意识。
3、本节课重点是解直角三角形,这是因为它和相似等知识一样,是以后会解题的重要工具,将被广泛的应用。
难点是选择合适的边角关系。这是因为在解直角三角形时,需要学生根据已知条件,结合图形,经过分析,选择准确简单的关系式,而学生刚学三角函数,应用还不灵活,所以感到困难。
第二方面:教法分析
本节课我选用了引导发现法和归纳总结法,并应用了媒体教学。这是因为课标提出“教学活动是师生之间,学生之间交往互动与共同发展的过程,教师是教学活动的引导者与合作者。”这两种方法可以让老师成为导演,学生扮演演员,充分发挥学生的主体地位。而媒体的使用可以满足学生的好奇心,课堂容量增大,最大限度的提高课堂效率。
第三方面:学法指导
为了充分发挥导学案的以案导学的作用,在学案中我根据学习内容的需要,增加了“老师温馨提示”栏目,让学生在课前预习时降低学习难度,能够跳一跳,摘到桃子。在教学时,我注意引导学生养成及时归纳、总结规律方法,有目的学习的好习惯。
第四方面:教学程序设计
本节课的教学我按照学案导学的“学--研--展--教--达”的教学模式展开。
1、在学这个教学环节,我在课前下发学案,让学生在学案的引领下,充分感知本节课要学习的内容,记录预习疑惑,及查阅相关资料。及时发现自身学习本节内容的不足之处,在上课时能够积极思考,合作,交流,展示。
2、在研这个环节,我精心设计问题,将本节的唯一知识点---解直角三角形,遵照“由特殊到一般”的原则转变为探索性问题的问题点、能力点,既学案中第二个大问题的里4个小问题,通过对知识点的教师设疑、学生质疑、解释、归纳总结等一系列师生研讨活动,得出解直角三角形的定,挖掘出它的内涵和外延,从而激发学生主动思考,逐步培养学生探究精神以及对教材的分析,归纳,演绎的能力,让学生学会看书,学会自学,进而突出本节重点。
3、在展这个环节我以本节例题即学案中的例1为基础,采用变式训练,逐渐增加问题难度,让学生在不同的问题中,多角度领悟本节重点知识--解直角三角形问题的实质,通过“兵教兵,兵强兵,兵练兵”的方法,让学生充分展示和反馈,帮助学生理解解直角三角形的注意事项,及怎样选择合适的边角关系式,怎样引辅助线,怎样写解题过程等问题,达到突破本节难点的目的。
4、在教这个环节我在学生理解解直角三角形方法的基础上,应用它解决生活中的实际问题,即学案上拓展提升问题,它实质也是本节例题的一个变式训练,培养学生一题多变,一题多解的思维方式,让学生体会数学知识的螺旋上升美。并且我精选了贴近学生生活情境的实际背景,寓德育与数学一体,生活与数学一体。激发学生的学习兴趣,提升学生的创新思维和合作意识,让数学思维好的同学吃的饱,使不同的人在数学上有不同的发展。
5、通过达标检测这个环节,及时反馈本节学生存在的问题,当堂点评,充分发挥小组的合作精神。
6、作业紧紧围绕巩固本节所学内容展开,有一定的梯度,让不同程度的学生都有所收获。
板书设计本着重点突出的原则,让学生对本节课的主要知识一目了然,加深印象。
第五方面:设计理念
在设计本节课时,我力求让学生意识到:要解决老师课堂上提出的问题,看书不看详细不行,只看书不思考不行,思考不深不透还不行,如本节的复习提问部分,我虽然在导学案中给出了,但我在提问时却换了一个方式提问,目的让学生真正理解学案内容。而不是照着学案念,在讲授本节课时,我尽量实现自己角色的转变,让自己从讲台走下来,成为“平等中的首席”。
总之,我尽量创设适当和适合的教育情境,因为我知道,如果将15克盐放在我面前,无论如何都难以下咽,但是,把它放在鲜美的汤中,在享受佳肴时,15克盐早已被吸收。情境之余知识,犹如汤之余盐,盐要溶入汤中,才能被吸收;
知识需要溶入情境中,才能显示出活力和美感!
各位老师:
你们好!今天我要为大家说的课题是《全等三角形的判定》
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:
这一节内容是初中《数学》人教版教材,八年级上册第十一章第二节的内容。在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位,以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的SSS和SAS。
④能够运用SSS和SAS判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力。
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点、难点:①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3、学情分析:(说学法)
(1)、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
(2)、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
(3)、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4、教学程序:(说教学过程)
(1)复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角。
性质:全等三角形对应边和对应角相等
三角形全等的性质让我们知道AB=A’B’ BC=B’C’ AC=A’C’∠A=∠A’ ∠B=∠B’ ∠C=∠C’,满足六个条件中这一部分,能确定△ABC≌△A’B’C’,先让学生画出△ABD,再让学生在画△A’B’C’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’ BC=B’C’ AC=A’C’时,只能画出一个A’B’C’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成SSS。
(3)得出定理,我通过讲解简单的例题,让学生懂得定理SSS定理的运用。
(4)探究2:
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成SAS
(5)通过解决生活实例,讲解三角形全等的运用
(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。
(7)小结:通过本节课的学习,你有哪些收获?
(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
(9)布置作业:P15,第1,3题,预习P10—P12的内容。
各位老师:
你们好!今天我要为大家讲的课题是《利用三角形全等测距离》
首先,自我介绍:(略)
我对本节教材进行一些分析:
一、教材分析(说教材):
1、地位和作用:这节课是在学生学习了全等三角形的性质及其判定条件之后的一节综合应用课。利用三角形全等解决实际问题,首先就要把实际问题转化为三角形全等问题。其目的是培养学生构建数学模型,并用数学知识来解决实际问题。同时,培养学生说理表达能力,为今后学习几何证明打下良好的基础。
2、教育教学目标:
根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:
知识目标:能够利用三角形全等解决实际问题。
能力目标:通过自主探究、实验,培养学生的自主探究能力、小组合作能力、语言表达能力,以及灵活运用所学解决实际问题的能力。
情感目标:通过学习使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣,通过小组合作,培养合作意识。
3. 重点,难点以及确定依据:
教学重点:根据新课标的要求以及对教学目标的分析将重点设定为能够利用三角形全等测量距离。
教学难点:针对本节课内容及学生的心理、认知结构将难点设定为灵活利用三角形全等解决实际问题。
二、教学策略(说教法)
本节课涉及的知识点不多,知识的切入点比较低。教师以多媒体为教学平台,通过精心设计的问题串和活动系列来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动学生的学习积极性,达到事半功倍的教学效果。在教学中,教师主要采用启发引导的方法,鼓励学生发现问题,利用所学解决问题,在探究阶段,教师应关注学生的思路、方法,鼓励学生小组合作,教师进行适当点拨,以这种形式突出重点,突破难点,同时培养学生的合作意识。在解决方法描述阶段,教师应关注学生的语言表达,要求学生表达尽量清楚、简介、符合逻辑,培养学生的语言表达能力。
三.学情分析:(说学法)
(二)学情分析:学生的知识技能基础:学生在本章的前几节内容中已经学习了“三角形”,“全等三角形”以及“探索三角形全等的条件”。尤其是通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,学生就具备了“利用三角形全等测距离”的理论基础。
学生的活动经验基础:学生在前几节内容中已经经历过解决实际问题的过程,具备了一定的分析问题和解决问题的活动经验。
四、教学设计分析(说设计)
本节课设计了七个个教学环节:复习提问;
情境引入“议一议”;
探索新知;
点拨提高“想一想”;
练习巩固“做一做”;
课堂小结;
布置作业。
第一环节;
复习提问
活动内容:
① 复习全等三角形的判定条件及性质两方面内容,
② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!(以小组为单位抢答或个人抢答或根据不同情况而定)
活动目的:通过第1个问题的提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础;
第2个问题是为学习新内容作铺垫,向学生进一步渗透理论联系实际。
课件教学效果:第1题是学生独立思考后回答,由于问题较简单,学生回答踊跃;
第2题是第1题的继续,学生的回答的方法较多,小组间的竞争提高了学习热情,使学生产生自信和竞争意识,最后老师通过课件的动画演示使学生开始在不知不觉中集中精力,走入数学殿堂。
第二环节:情境引入
活动内容:多媒体展示课本引例(引入一位经历过战争的老人讲述的一个故事)
教师提出问题:
你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?
活动目的: 用真实的故事引入新课,体现了三角形全等在生活中的广泛应用,适时的提问,激发了学生的学习积极性和好胜心。学生独立思考后,小组间相互交流看法。教师要注意帮助学生审题,引发学生思考,并有主动尝试利用三角形全等来解决实际问题的欲望,从而引出课题---利用三角形全等测距离。
实际教学效果:由故事所引发的问题使学生产生了好奇心,并激发了他们的求知欲,有了学习的积极性,使问题变的生动有趣。但是有些同学对此问题不是很理解,也有一些同学意见不同,针对此,教师可做如下安排:
① 先让学生体会这个情境,明白战士的具体做法,对战士的测量有直观的理解;多媒体演示能更直观地解决有关角度的问题。
② 在上述条件下,学生总结并解释战士采用的方法的数学道理。
事实表明,学生们主动参与,积极思考,在操作过程中培养合作交流精神和严谨的学习态度。在鼓励学生的过程中,锻炼了他们的数学思考能力和语言表达能力,形成了良好的数学氛围。
第三环节:探究新知
活动内容: ① 教师引导学生可以用全等的方法测距离,来解决生活中的许多解决相关问题。我加入了五一出游所遇到的问题情境,怎样测量池塘间的距离,个人思考后,小组讨论。
② 展示各组方案,小组成员代表讲述画法和原理,全班选定最佳方案,教师作出鼓励性评价。
活动目的: 让学生懂得情境中使用的方法虽然是一种估测,不是准确值,但却是解决问题的好方法 ,鼓励学生通过积极探索、讨论找出解决方案,通过合作从不同的角度得出不同的测量方法。使学生理解透彻明白。
实际教学效果:学生讨论出的三种方法,初步感受到成功的喜悦.
第四环节:练习提高
活动内容:课件展示练习,巩固所学知识。
活动目的:对本节课的知识进一步的理解、巩固、提高以及培养学生的语言表达能力
实际教学效果:学生基本掌握了利用三角形全等知识解决生活中的实际问题,达到较好的学习效果。锻炼了学生思维的逻辑性和发散性。在学生合作交流解决问题的过程中,培养学生的合作精神,提高了学生的口头表达能力。
第五环节:反思小结
活动内容:师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。(着重思考如何把距离的测量转化为三角形全等的问题)学生回忆、交流,尝试着对所学知识进行归纳、梳理。教师引导学生回忆所学内容,与学生一起进行补充完善,使学生更加明确所学知识。
活动目的:使学生知道数学与利用所学的数学知识,把生活中的实际问题转化为几何问题,知道运用数学建模的方法解决身边的实际问题,并体会其中的转化思想。
实际教学效果:学生畅所欲言自己的感受与实际收获,体验成功的喜悦。(图片显示):
第六环节:布置作业
五.教学设计反思
1. 本节课的教学重点是能利用三角形全等的条件解决生活中的实际问题。多媒体课件的使用能多方面的补充黑板教学中的不足,使一些景物更直观、演示更生动,在三角形全等的图形中多媒体画图也有很大的优势,能让各种线条动起来、还有颜色的不同都能让学生一目了然,让生活中的数学能更加完美地呈现在学生的眼中。
2. 在本节课里,首先创设了一个“现实情境”,使学生的练习具有“真实”地解决问题的意味,然后用角色模拟的方法进行自由而舒畅的交流活动。先让学生充分发表意见,并给予激励性的评价,培养学生主动运用所学知识寻求发现问题和解决问题的能力。
一、教材分析
(一)、教材的地位与作用
HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。
(二)、教学目标
1、会已知直角三角形的一条直角边和斜边,作直角三角形
2、掌握直角三角形全等的判定方法----“HL”定理
3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题
4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。
(三)、教学重难点:
重点:直角三角形全等的判定方法
难点:运用全等直角三角形的判定方法“HL”解决问题
二、说教学方法:自主学习、合作讨论、交流展示
通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。
三、说教学过程
(一)、创设情境,引入新课
1、复习思考
(1)、判定两个三角形全等的方法
(2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB
设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。
2、新课引入(情境)
(课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角.(AAS)
方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)
……
学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。
教师活动:引导学生发现,对有困难的同学提供帮助。
设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。
⑵如果他只带了一个卷尺,能完成这个任务吗?
设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的注意力,学生乐于学习。
师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。
下面让我们一起来验证这个结论。
(二)、合作交流,探索新知
1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,CB=3cm.
按照步骤做一做:
①作∠MCN=90°
②在射线CM上截取线段CB=3cm
③以B为圆心,5cm为半径画弧,交射线CM于点A;
④连接AB.△ABC就是所求作的三角形
学生活动:按老师的要求画出图形
教师活动:规范作图,及时解决学生作图时遇到的困难
设计意图:培养学生的动手操作能力
探索交流
(2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
(3)交流之后,你发现了什么?
学生交流,发现。已知什么前提,满足什么条件,得到什么结论。
(4)归纳;
由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)
(5)用数学语言表述上面的判定方法
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
教师规范板书,提醒学生规范书写。
(6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”
设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。
(7)练习:判断满足下列条件的两个三角形是否全等?为什么?
①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)
②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)
③两直角边对应相等的两个直角三角形(全等,SAS)
④有两边对应相等的两个直角三角形.
分三种情况考虑:两个直角边对应相等,全等(SAS);
一条直角边和斜边对应相等,全等(HL);
一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。
设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。
(三)、尝试应用,解决问题
例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC
分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边
证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC(全等三角形的对应边相等)
(四)、当堂检测,及时反馈
1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,
你能说明BC与BD相等吗?
2、如图,两根长度为10米的绳子,一端系在旗杆上,
另一端分别固定在地面两个木桩上,
两个木桩离旗杆底部的距离相等吗?请说明你的理由。
(五)、收获分享,感悟困惑
学生谈谈本节课的收获,以及还有哪些疑问。
一般三角形全等的判定方法有SAS,ASA,AAS,SSS
直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL
灵活运用各种方法证明直角三角形全等
(六)、课后作业,应用提高
课本109页练习1、2、3
板书设计
14.2.5两个直角三角形全等的判定
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
投影区
SAS、ASA、AAS、SSS
例证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC
一、教材分析
(一)、教材的地位与作用
HL定理是学生学习一般三角形全等的判定之后的一节内容,主要让学生通过对直角三角形全等的判定,让学生体会其特殊性,为学习等腰三角形的性质和直角三角形中30度的角所对的直角边与斜边的关系作铺垫。
(二)、教学目标
1、会已知直角三角形的一条直角边和斜边,作直角三角形
2、掌握直角三角形全等的判定方法----“HL”定理
3、能利用全等直角三角形的判定方法“HL”定理解决简单实际问题
4、经历探索直角三角形全等条件的过程,体会分析问题的方法。积累数学活动的经验。
(三)、教学重难点:
重点:直角三角形全等的判定方法
难点:运用全等直角三角形的判定方法“HL”解决问题
二、说教学方法:自主学习、合作讨论、交流展示
通过动手操作,在合作中交流,比较中共同发现判定直角三角形全等的另一种特殊方法“HL”,通过例题和练习巩固这种判定方法。
三、说教学过程
(一)、创设情境,引入新课
1、复习思考
(1)、判定两个三角形全等的方法
(2)、如图,Rt△ABC中,直角边是AC、BC,斜边是AB
设计意图:通过简单的复习帮助学生回顾旧知识,为本节课内容做铺垫。
2、新课引入(情境)
(课件显示)舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量。
(1)你能帮他想个办法吗?
方法一:测量斜边和一个对应的锐角.(AAS)
方法二:测量没遮住的一条直角边和一个对应的锐角.(ASA)或(AAS)
……
学生活动:能从已经学过的判定两个三角形全等的方法入手,相互交流。
教师活动:引导学生发现,对有困难的同学提供帮助。
设计意图:发挥学生的课堂主动性及参与课堂的积极性,由于问题不难,学生参与会比较广。
⑵如果他只带了一个卷尺,能完成这个任务吗?
设计意图:由于学生能用到的工具减少了,学生会进入沉思,自然而然会进入新知识的探索中,吊足学生的胃口,集中学生的注意力,学生乐于学习。
师:工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”.你相信他的结论吗?
设计意图:教师提供方案,挑战学生已有的知识,激发学生知识的火花,使其迫不及待的想来发现新知识。
下面让我们一起来验证这个结论。
(二)、合作交流,探索新知
1、探究:如果两个直角三角形满足斜边和一条直角边对应相等,这两个直角三角形全等吗?
(1)动手试一试。利用尺规作一个RtΔABC,∠C=90°,AB=5cm,
按照步骤做一做:
①作∠MCN=90°
②在射线CM上截取线段CB=3cm
③以B为圆心,5cm为半径画弧,交射线CM于点A;
④连接△ABC就是所求作的三角形
学生活动:按老师的要求画出图形
教师活动:规范作图,及时解决学生作图时遇到的困难
设计意图:培养学生的动手操作能力
探索交流
(2)剪下这个三角形,和其他同学所作的三角形进行比较,它们能重合吗?
(3)交流之后,你发现了什么?
学生交流,发现。已知什么前提,满足什么条件,得到什么结论。
(4)归纳;
由上面的画图和实验可以得到判定两个直角三角形全等的一个方法
定理:斜边和一直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”)
(5)用数学语言表述上面的判定方法
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
教师规范板书,提醒学生规范书写。
(6)直角三角形是特殊的三角形,所以不仅有一般三角形判定全等的方法SAS、ASA、AAS、SSS还有直角三角形特殊的判定方法“HL”
设计意图:教师适时小结,能理顺学生的思路,从而形成学生自己的知识。
(7)练习:判断满足下列条件的两个三角形是否全等?为什么?
①一个锐角及这个锐角的对边对应相等的两个直角三角形.(全等,AAS)
②一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形(全等,ASA)
③两直角边对应相等的两个直角三角形(全等,SAS)
④有两边对应相等的两个直角三角形.
分三种情况考虑:两个直角边对应相等,全等(SAS);
一条直角边和斜边对应相等,全等(HL);
一条直角边对应相等,第一个三角形的斜边与第二个三角形的直角边对应相等则不全等。
设计意图:趁热打铁,体会直角三角形全等的5种判定方法,练习④体现数学分类讨论思想,让学生进一步感受数学语言的严谨性及数学思维的严密性。
(三)、尝试应用,解决问题
例1、已知:如图∠BAC=∠CDB=90°,AC=DB求证:AB=DC
分析:要说明AB=DC,由于AB和DC分别在两个三角形中,只要他们所在的两个三角形全等就可以了,而这两个三角形是直角三角形,题目给了我们一条直角边相等,SAS、ASA、AAS、SSS都用不上,自然想到用HL定理来做,可还差一条斜边对应相等,经过观察发现,这两个三角形的斜边是公共边
证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC(全等三角形的对应边相等)
(四)、当堂检测,及时反馈
1、如图,AC=AD,∠C,∠D是直角,将上述条件标注在图中,
你能说明BC与BD相等吗?
2、如图,两根长度为10米的绳子,一端系在旗杆上,
另一端分别固定在地面两个木桩上,
两个木桩离旗杆底部的距离相等吗?请说明你的理由。
(五)、收获分享,感悟困惑
学生谈谈本节课的收获,以及还有哪些疑问。
一般三角形全等的判定方法有SAS,ASA,AAS,SSS
直角三角形全等的判定方法有SAS,ASA,AAS,SSS,外加HL
灵活运用各种方法证明直角三角形全等
(六)、课后作业,应用提高
课本109页练习1、2、3
板书设计
两个直角三角形全等的判定
∵∠B=∠E=90°
∴在Rt△ABC和Rt△DEF中
或
∴Rt△ABC≌Rt△DEF(HL)
投影区
SAS、ASA、AAS、SSS
例证明:∵∠BAC=∠CDB=90°
∴△BAC,△CDB都是直角三角形
在Rt△BAC和Rt△CDB中
∵AC=DB
BC=CB
∴Rt△ABC≌Rt△DCB(HL)
∴AB=DC
尊敬的领导、老师们:你们好
今天我说课的题目是北师大版数学七年级下册第四章第3节《探索三角形全等的条件》第3课时。下面,我将从教材分析、教学方法及教学过程等几个方面对本课的设计进行说明。
一、教材分析(一)本节内容在教材中的地位与作用。
《探索三角形全等的条件》对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。它是两三角形间最简单、最常见的关系。本节《探索三角形全等的条件》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的。本节课中的内容是《探索三角形全等的条件》中的最后一个判定,在学习新知识中我们复习前面所学的SSS,ASA,AAS,也为后面的尺规作图打好基础。另外也对后面的三角形的相似等知识学习提供了保障。本节课的知识具有承上启下的作用。
(二)教学目标
在本课的教学中,不仅要让学生学会“边角边”这一全等三角形的识别方法,更主要地是要让学生掌握研究问题的方法,初步领悟分类讨论的数学思想。同时,还要让学生感受到数学来源于生活,又服务于生活的基本事实,从而激发学生学习数学的兴趣。为此,我确立如下教学目标:
(1)知识目标:经历用两角一边进行画图和验证三角形是否全等的过程中,探索出全等三角形的条件“边角边”,并能应用它们来判定两个三角形是否全等。还对两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等进行探索。
(2)能力目标:在探索三角形全等条件的过程中,让学生学会有条理地思考、分析、解决问题的能力,培养学生推理意识和能力。有关数学题的答题规范化的培养。
(3)情感目标:培养学生敢于实践,勇于发现,大胆探索,合作创新的精神;
体会数学在生活中的作用,增强学习数学的兴趣,树立学好数学的信心。
(三)教材重难点
学情分析:
学生现在处于几何推理论证的初步阶段,从这章开始,学生应该逐步学会几何证明,几何证明题的推理证明的书写对学生来说难度较大,同时,我们知道,以前学生学习几何都是一些简单的图形,从这章开始出现了几个图形的变换或叠加,学生在解题过程中,找全等条件是一个难点。
鉴于以上学情分析,我把本节课的重难点设置为:本节课的重点是掌握三角形全等的条件“SAS”,并能应用它们来判定两个三角形是否全等。探索“两边分别相等且其中一组等边的对角分别相等,两个三角形不一定全等”是难点。我将采用让学生动手操作、合作探究、媒体演示的方式以及渗透分类讨论的数学思想方法教学来突出重点、突破难点。
(四)教学具准备,教具:相关多媒体课件;
学具:剪刀、纸片、圆规、直尺。
二、教法选择与学法指导本节课主要是“边角边”这一基本事实的发现,故我在课堂教学中将尽量为学生提供“做中学”的时空,让学生进行小组合作学习,在“做”的过程中潜移默化地渗透分类讨论的数学思想方法,遵循“教是为了不教”的原则,让学生自得知识、自寻方法、自觅规律、自悟原理。并且用导学案的形式让学生对本节课内容很好的把握。
三、教学过程(一)温故知新
1.我们在前面学过____________________方法判定两个三角形全等。
(二)设疑引题,激发求知欲望
首先,我出示一个实际问题:
问题:小颖作业本上画的三角形被墨迹污染,她想画出一个与原来完全一样的三角形,她该怎么办呢?你能帮帮小颖吗?
这样设计的目的是既交代了本节课要研究和学习的主要问题,又能较好地激发学生求知与探索的欲望,同时也为本节课的教学做好了铺垫。
(三)引导活动“想一想”,揭示知识产生过程
数学教学的本质就是数学活动的教学,为此,本节课我设计了如下的系列活动,旨在让学生通过动手操作、合作探究来揭示“边角边”判定三角形全等这一知识的产生过程。探索三角形全等条件重要学生的探索能力的培养。
活动一:让学生通过复习回顾已学过的判断两个三角形全等的方法引出本节课所要探究的两边一角能不能判断两个三角形全等。
活动二:让学生首先通过画图对两边及其夹角对应相等的情况进行对比来判断所画的两个三角形是否全等。特别的小组用叠合的方法来进行判断三角形全等,由此得到判定两个三角形全等的方法4(两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”)。
活动三:在学生画出有两边及其一边的对角对应相等的两个三角形的图上,让学生观察,看画出的三角形是否一定全等。由此得出结论,这样的两个三角形不一定全等。老师引导学生得出结论,并揭开秘密,针对此结论用一个生活中的例子来进行巩固。联系实际:请同学们观察下面图形中三角形全等吗?由于此图来自本城市的重要工程,所以学生很快能理解两边分别相等且其中一组等边的对角分别相等的两个三角形不一定全等的结论。并说明数学在实际生活中是存在的,并可以应用数学解答实际问题。
(四)练一练,用了三个例子来巩固“边角边”的应用。由老师引导--学生解决—学生点评—教师点评的流程讲解练习。让学生知道一般的我们写三角形的有关题时,对应顶点应写在对应的位置上,并且要知道每一步的理由,但不一定要写出理由来。链接中考要求对学生的答题规范化能获取高分。比如在第三个题中:3.在△ABC中,AB=AC,AD是∠BAC的角平分线。那么BD与CD相等吗?为什么?回答相等,然后再说明理由。这样才规范。还有公共边的写法,第一题中就写成“AC=CA”而第三题的公共边应写成AD=AD.中考答题规范化应该从七年级抓起。
(五)作业布置:完成学案剩下的题。
(六)课堂小结
(1)本节课你学了什么?
(七)老师的赠言。每一节课都送给学生一句有关学习的警句,促进学生对学习兴趣培养,让他们从“你要学”转化为“我想学”。
附:
复习:SSS,ASA,AAS
结论:两边及其夹角分别相等的两个三角形全等,简写为“边角边”或“SAS”.
各位老师:
你们好!今天我要为大家讲的课题是《利用三角形全等测距离》
首先,自我介绍:(略)
我对本节教材进行一些分析:
一、教材分析(说教材):
1、地位和作用:这节课是在学生学习了全等三角形的性质及其判定条件之后的一节综合应用课。利用三角形全等解决实际问题,首先就要把实际问题转化为三角形全等问题。其目的是培养学生构建数学模型,并用数学知识来解决实际问题。同时,培养学生说理表达能力,为今后学习几何证明打下良好的基础。
2、教育教学目标:
根据新《课标》要求和上述教材分析,结合学生的情况,我制定了以下教学目标:
知识目标:能够利用三角形全等解决实际问题。
能力目标:通过自主探究、实验,培养学生的自主探究能力、小组合作能力、语言表达能力,以及灵活运用所学解决实际问题的能力。
情感目标:通过学习使学生明白数学来源于生活,学习数学是为了解决实际问题,培养学生科学的学习态度,同时通过多媒体演示激发学生探究数学问题的兴趣,通过小组合作,培养合作意识。
3. 重点,难点以及确定依据:
教学重点:根据新课标的要求以及对教学目标的分析将重点设定为能够利用三角形全等测量距离。
教学难点:针对本节课内容及学生的心理、认知结构将难点设定为灵活利用三角形全等解决实际问题。
二、教学策略(说教法)
本节课涉及的知识点不多,知识的切入点比较低。教师以多媒体为教学平台,通过精心设计的问题串和活动系列来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动学生的学习积极性,达到事半功倍的教学效果。在教学中,教师主要采用启发引导的方法,鼓励学生发现问题,利用所学解决问题,在探究阶段,教师应关注学生的思路、方法,鼓励学生小组合作,教师进行适当点拨,以这种形式突出重点,突破难点,同时培养学生的合作意识。在解决方法描述阶段,教师应关注学生的语言表达,要求学生表达尽量清楚、简介、符合逻辑,培养学生的语言表达能力。
三.学情分析:(说学法)
学生的知识技能基础:学生在本章的前几节内容中已经学习了“三角形”,“全等三角形”以及“探索三角形全等的条件”。尤其是通过探索三角形全等,得到了“边边边”,“边角边”,“角边角”,“角角边”定理,用这些定理能够判断两个三角形是否全等,掌握了这些知识,学生就具备了“利用三角形全等测距离”的理论基础。
学生的活动经验基础:学生在前几节内容中已经经历过解决实际问题的过程,具备了一定的分析问题和解决问题的活动经验。
四、教学设计分析(说设计)
本节课设计了七个个教学环节:复习提问;
情境引入“议一议”;
探索新知;
点拨提高“想一想”;
练习巩固“做一做”;
课堂小结;
布置作业。
第一环节;
复习提问
活动内容:
① 复习全等三角形的判定条件及性质两方面内容,
② 在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!(以小组为单位抢答或个人抢答或根据不同情况而定)
活动目的:通过第1个问题的提问可以温习与本节有关的知识,帮助基础较弱或掌握不牢的学生巩固旧知识,同时也是本节课的理论基础;
第2个问题是为学习新内容作铺垫,向学生进一步渗透理论联系实际。
课件教学效果:第1题是学生独立思考后回答,由于问题较简单,学生回答踊跃;
第2题是第1题的继续,学生的回答的方法较多,小组间的竞争提高了学习热情,使学生产生自信和竞争意识,最后老师通过课件的动画演示使学生开始在不知不觉中集中精力,走入数学殿堂。
第二环节:情境引入
活动内容:多媒体展示课本引例(引入一位经历过战争的老人讲述的一个故事)
教师提出问题:
你知道聪明的战士用的是什么方法吗?能解释其中的原理吗?
活动目的: 用真实的故事引入新课,体现了三角形全等在生活中的广泛应用,适时的提问,激发了学生的学习积极性和好胜心。学生独立思考后,小组间相互交流看法。教师要注意帮助学生审题,引发学生思考,并有主动尝试利用三角形全等来解决实际问题的欲望,从而引出课题---利用三角形全等测距离。
实际教学效果:由故事所引发的问题使学生产生了好奇心,并激发了他们的求知欲,有了学习的积极性,使问题变的生动有趣。但是有些同学对此问题不是很理解,也有一些同学意见不同,针对此,教师可做如下安排:
① 先让学生体会这个情境,明白战士的具体做法,对战士的测量有直观的理解;多媒体演示能更直观地解决有关角度的问题。
② 在上述条件下,学生总结并解释战士采用的方法的数学道理。
事实表明,学生们主动参与,积极思考,在操作过程中培养合作交流精神和严谨的学习态度。在鼓励学生的过程中,锻炼了他们的数学思考能力和语言表达能力,形成了良好的数学氛围。
第三环节:探究新知
活动内容: ① 教师引导学生可以用全等的方法测距离,来解决生活中的许多解决相关问题。我加入了五一出游所遇到的问题情境,怎样测量池塘间的距离,个人思考后,小组讨论。
② 展示各组方案,小组成员代表讲述画法和原理,全班选定最佳方案,教师作出鼓励性评价。
活动目的: 让学生懂得情境中使用的方法虽然是一种估测,不是准确值,但却是解决问题的好方法 ,鼓励学生通过积极探索、讨论找出解决方案,通过合作从不同的角度得出不同的测量方法。使学生理解透彻明白。
实际教学效果:学生讨论出的三种方法,初步感受到成功的喜悦.
第四环节:练习提高
活动内容:课件展示练习,巩固所学知识。
活动目的:对本节课的知识进一步的理解、巩固、提高以及培养学生的语言表达能力
实际教学效果:学生基本掌握了利用三角形全等知识解决生活中的实际问题,达到较好的学习效果。锻炼了学生思维的逻辑性和发散性。在学生合作交流解决问题的过程中,培养学生的合作精神,提高了学生的口头表达能力。
第五环节:反思小结
活动内容:师生互相交流利用全等三角形测量距离的合理性,在解决问题的过程中,采用了那些方案使不能直接测量的物体间的距离转化为可以测量的距离。(着重思考如何把距离的测量转化为三角形全等的问题)学生回忆、交流,尝试着对所学知识进行归纳、梳理。教师引导学生回忆所学内容,与学生一起进行补充完善,使学生更加明确所学知识。
活动目的:使学生知道数学与利用所学的数学知识,把生活中的实际问题转化为几何问题,知道运用数学建模的方法解决身边的实际问题,并体会其中的转化思想。
实际教学效果:学生畅所欲言自己的感受与实际收获,体验成功的喜悦。(图片显示):
第六环节:布置作业
五.教学设计反思
1. 本节课的教学重点是能利用三角形全等的条件解决生活中的实际问题。多媒体课件的"使用能多方面的补充黑板教学中的不足,使一些景物更直观、演示更生动,在三角形全等的图形中多媒体画图也有很大的优势,能让各种线条动起来、还有颜色的不同都能让学生一目了然,让生活中的数学能更加完美地呈现在学生的眼中。
2. 在本节课里,首先创设了一个“现实情境”,使学生的练习具有“真实”地解决问题的意味,然后用角色模拟的方法进行自由而舒畅的交流活动。先让学生充分发表意见,并给予激励性的评价,培养学生主动运用所学知识寻求发现问题和解决问题的能力。
一、教材分析
(一)教材地位
直角三角形是最简单、最基本的几何图形,在生活中随处可见,是研究其他图形的`基础,在解决实际问题中也有着广泛的应用.《解直角三角形的应用》是第28章锐角三角函数的延续,渗透着数形结合思想、方程思想、转化思想。因此本课无论是在本章还是在整个初中数学教材中都具有重要的地位。
(二)教学目标
这节课,我说面对的是初三学生,从人的认知规律看,他们已经具有初步的探究能力和逻辑思维能力。但直角三角形的应用题型较多,他们对建立直角三角形模型上可能会有困难。针对上述学生情况,确定本节课的教学目标如下:
1.通过观察、交流等活动,会建立直角三角形模型。
2.经历解直角三角形中作高的过程,懂得解直角三角形的三种基本模型,进一步渗透数形结合思想、方程思想、转化(化归)思想,激发学生的学习兴趣.
(三)重点难点
1.重点:熟练运用有关三角函数知识.
2.难点:如何添作辅助线解决实际问题.
二、教法学法
1.教法:采用“研究体验式”创新教学法,这其实是“学程导航”模式下的一种教法,主要是教给学生一种学习方法,使他们学会自己主动探索知识并发现规律。
2.学法:主要是发挥学生的主观能动性。学生在课前做好预习作业,课堂上则要积极参与讨论,课后根据老师布置的课外作业进行巩固和迁移。
三、教学程序
(一)准备阶段
我主要的准备工作是备好课,在上课前一天布置学生做好预习作业。
预习作业:
1. 如图,Rt⊿ABC中,你知道∠A的哪几种锐角三角函数?能给出定义吗?
2. 填表:锐角α 三角函数
3. 已知:从热气球A看一栋高楼顶部的仰角α为300,看这栋高楼底部的俯角β为600,若热气球与高楼的水平距离为 m,求这栋高楼有多高?
4. 如图:AB=200m,在A处测得点C在北偏西300的方向上,在 B处测得点C在北偏西600的方向上,你能求出C到AB的距离吗?
5. 如图:梯形ABCD中,BC∥AD,AB=13,且tan∠BAE= ,求BE的长。
(二)课堂教学过程
1.预习作业的交流
小组交流预习作业并由学生代表展示。
2.新知探究
(1)教师出示问题1
如图:要在木里县某林场东西方向的两地之间修一条公路MN。已知点C周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东450方向上,从A向东走600米到达B处,测得C在点B的北偏西600方向上。问:MN是否穿过原始森林保护区?为什么?
追问:你还能求出其他问题吗?若提不出问题,可给出问题:若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?
(2)出示问题2
如图,一艘轮船以每小时20千米的速度沿正北方向航行,在A处测得灯塔C在北偏西300方向,航行2小时后到达B处,在B处测得灯塔C在北偏西600方向。当轮船到达灯塔C的正东方向D处时,求此时轮船与灯塔C的距离(结果保留根号)。
追问:如果改变若干条件,你能设计出其他问题吗?
(3)出示问题3
气象台发布的卫星云图显示,代号为W的台风在某海岛(设为点O)的南偏东450方向的B点生成,测得OB= km,台风中心从B点以40km/h的速度向正北方向移动。经5h后到达海面上的点C处,因受气旋影响,台风中心从点C开始以30km/h的速度向北偏西600方向继续移动。以O为原点建立如图所示的直角坐标系。
如:(1)台风中心生成点B的坐标为 ,台风中心转折点C的坐标为 (结果保留根号)。
(2)已知距台风中心20km的范围内均会受到台风的侵袭。如果某城市(设为点A)位于O的正北方向且处于台风中心的移动路线上,那么台风从生成到最初侵袭该城要经过多长时间?
3.巩固练习
飞机在高空中的A处测得地面C的俯角为450,水平飞行2km,再测其俯角为300,求飞机飞行的高度。(精确到0.1km,参考数据:
1.73)
4.课堂小结
请学生围绕下列问题进行反思总结:
(1)解直角三角形有哪些基本模型?
(2)本节课涉及到哪些数学思想?
(3)你觉得如何解直角三角形的实际问题?
5、布置作业
复习第29章《投影与视图》具体见试卷
6、课堂检测
1.如图,直升飞机在高为200米的大楼AB左侧P点处,测得大楼的顶部仰角为45°,测得大楼底部俯角为30°,求飞机与大楼之间的水平距离.
2. 如图,直升飞机在高为200米的大楼AB上方P点处,从大楼的顶部和底部测得飞机的仰角为30°和45°,求飞机的高度PO .
3.如图所示,某水库大坝的横断面是梯形,坝顶宽AD=2.5m,坝高4m,背水坡AB的坡度是1︰1,迎水坡CD的坡度1︰1.5,求坝底宽BC.
四、设计思路
本节课通过预习作业中3、4、5三个问题,引出了解直角三角形的三种基本模型,说明了解直角三角形应用的广泛性,从而体现了学习直角三角形应用知识的必要性。教学中坚持以学生为主体,注重所学内容与现实生活的联系,注重使学生经历观察、交流等探索过程。并通过追问与设计问题的形式,让学生解直角三角形的任务中发现了新问题,并让学生带着问题探索、交流,在思考中产生新认识,获得新的提高。在突破难点的同时培养学生勤于思考,勇于探索的精神,增加学生的学习兴趣和享受成功的喜悦。
一、 教材简析:
本章内容属于三角学,它的主要内容是直角三角形的边角关系及其实际应用,教材先从测量入手,给学生创设学习情境,接着研究直角三角形的边角关系---锐角三角函数,最后是运用勾股定理及锐角三角函数等知识解决一些简单的实际问题。其中前两节内容是基础,后者是重点。这主要是因为解直角三角形的知识有较多的应用。解直角三角形的知识,可以被广泛地应用于测量、工程技术和物理中,主要是用来计算距离,高度和角度。教科书中的应用题,内容比较广泛,具有综合技术教育价值,解决这类问题需要进行运算,但三角中的运算和逻辑思维是密不可分的;为了便于运算,常需要先选择公式并进行变换,同时,解直角三角形的应用题和课题学习也有利于培养学生空间想象的能力,即要求学生通过对实物的观察,或根据文字语言中的某些条件画出适合它们的图形,总之,解三角形的应用题与课后学习可以培养学生的三大数学能力和分析解决问题的能力。
同时,解直角三角形还有利于数形结合。通过这一章的学习,学生才能对直角三角形的概念有较为完整的认识。另外有些简单的几何图形可分解为一些直角三角形的组合,从而也能用本章的知识加以处理。以后学生学习斜三角形的余弦定理,正弦定理和任意三角形的面积公式时,也要用到解直角三角形的知识。
二、教学目的、重点、难点:
教学目的:使学生了解解直角三角形的概念,能熟练应用解直角三角形的知识解决实际问题,培养学生把实际问题转化为数学问题的能力。
重点:
1、让学生了解三角函数的意义,熟记特殊角的三角函数值,并会用锐角三角函数解决有关问题。
2、正确选择边与角的关系以简便的解法解直角三角形
难点:把实际问题转化为数学问题。
学会用数学问题来解决实际问题即是我们教学的目的也是我们教学的归宿。根据课标的要求,要尽量把解直角三角形与实际问题联系,减少单纯解三角形的习题。而要在实际问题中,要使学生养成先画图,再求解的习惯。还要引导学生合理地选择所要用的边角关系。
三、教学目标:
1、知识目标:
(1)经历由情境引出问题,探索掌握有关的数学知识内容,再运用于实践的过程,培养学数学、用数学的意识与能力。
(2)通过实例认识直角三角形的边角关系,即锐角三角函数;知道30、
45角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的角。
(3)运用三角函数解决与直角三角形有关的简单的实际问题。
(4)能综合运用直角三角形的勾股定理与边角关系解决简单的实际问题、
2、能力目标:培养学生把实际问题转化为数学问题并进行解决的能力,进而提高学生形象思维能力;渗透转化的思想。
3、情感目标:培养学生理论联系实际,敢于实践,勇于探索的精神.
四、教法与学法
1、教法的设计理念
根据基础教育课程改革的具体目的,结合注重开放与生成,构造充满生命活力的课堂教学体系。改变课堂过于注重知识传授的倾向,强调形成积极主动的学习态度,关注学生的学习兴趣和体验,让学生主动参与学习活动,并引导学生在课堂活动中感悟知识的生成,发展与变化。在教学过程中由学生主动去发现,去思考,留有足够的时间让他们去操作,体现以学生为主体的原则;而教师为主导,采用启发探索法、讲授法、讨论法相结合的教学方法。这样,使学生通过讨论,实践,形成深刻印象,对知识的掌握比较牢靠,对难点也比较容易突破,同时也培养了学生的数学能力。
2、学法
学生在小学就接触过直角三角形,先学习了锐角三角函数,所以这节课内容学生可以接受。本节的学习使学生初步掌握解直角三角形的方法,培养学生把实际问题转化为数学问题的能力。通过图形和器具的演示调动学生的学习积极性,同时让学生通过观察、思考、操作,体验转化过程,真正学会用数学知识解决实际的问题。
一、教材分析
(一)、教材的地位与作用
本节是在掌握了勾股定理,直角三角形中两锐角互余,锐角三角函数等有关知识的基础上,能利用直角三角形中的这些关系解直角三角形。通过本小节的学习,主要应让学生学会用直角三角形的有关知识去解决某些简单的实际问题。从而进一步把形和数结合起来,提高分析和解决问题的能力。它既是前面所学知识的运用,也是高中继续解斜三角形的重要预备知识。它的学习还蕴涵着深刻的数学思想方法(数学建模、转化化归),在本节教学中有针对性的对学生进行这方面的能力培养。
(二)教学重点
本节先通过一个实例引出在直角三角形中,已知两边,如何求第三边,再引导学生如何求另外的两个锐角,这样一是为了巩固前面的知识,二是如何让学生正确利用直角三角形中的边角关系,逐步培养学生数形结合的意识,从而确定本节课的重点是:由直角三角形中的已经知道元素,正确利用边角关系解直角三角形。
(三)、教学难点
由于直角三角形的边角之间的关系较多,学生一下难以熟练运用,因此选择合适的关系式解直角三角形是本课的难点。
(四)、教学目标分析
1、知识与技能:本节课的目标是使学生理解解直角三角形的意义,能运用直角三角形的三个边角关系式解直角三角形,培养学生分析和解决问题能力。其依据是:新课标对学生数学学习的总体目标规定“获得适应未来社会生活和进一步发展所必需的重要数学知识”。
2、过程与方法:通过学生的探索讨论发现解直角三角形所需的最简条件,使学生了解体会用化归的思想方法将未知问题转化为已知问题去解决。其依据是新课标关于学生的学习观——“动手实践、自主探索与合作交流是学习数学的重要方式”。
3、情感态度与价值观:通过对问题情境的讨论,以及对解直角三角形所需的最简条件的探究,培养学生的问题意识,体验经历运用数学知识解决一些简单的实际问题,渗透“数学建模”的思想。其依据是:新课标对学生数学学习的总体目标规定“具有初步的创新精神和实践能力,在情感态度和一般能力方面都能得到充分发展”。
二、教法设计与学法指导
(一)、教法分析
本节课采用的是“探究式”教法。在以最简洁的方式回顾原有知识的基础上,创设问题情境,引导学生从实际应用中建立数学模型,引出解直角三角形的定义和方法。接着通过例题,让学生主动探索解直角三角形所需的最简条件。学生在过程中克服困难,发展了自己的观察力、想象力和思维力,培养团结协作的精神,可以使他们的智慧潜能得到充分的开发,使其以一个研究者的方式学习,突出了学生在学习中的主体地位。
教法设计思路:通过例题讲解,使学生熟悉解直角三角形的一般方法,通过对题目中隐含条件的挖掘,培养学生分析、解决问题能力。
(二)、学法分析
通过直角三角形边角之间关系的复习和例题的实践应用,归纳出“解直角三角形”的含义和两种解题情况。通过讨论交流得出解直角三角形的方法,并学会把实际问题转化为解直角三角形的问题。
学法设计思路:自主探索、合作交流的学习方式能使学生在这一过程中主动获得知识,通过例题的实践应用,能提高学生分析问题,解决问题的能力,以及提高综合运用知识的能力。
(三)、教学媒体设计:由于本节内容较多,为了节约时间,让学生更直观形象的了解直角三角形中的边角关系的变化,激发学生学习兴趣,因此我借助多媒体演示。
三、教学过程设计
本节课我将围绕复习导入、探究新知、巩固练习、课堂小结、学生作业这五个环节展开我的教学,具体步骤是:
(一)复习导入
师:前面的课时中,我们学习了直角三角形的边角关系,下面老师来看看大家掌握得怎样?
1、直角三角形三边之间的关系?(a2+b2=c2,勾股定理)
2、直角三角形两锐角之间的关系?(∠A+∠B=900)
3、直角三角形的边和锐角之间的关系?
∠A的邻边
∠A的对边
∠A的对边
∠A的邻边
斜边
斜边
sin∠A= cos∠A= tan∠A=
生:学生回忆旧知,逐一回答。
目的:温故而知新,使学生能用直角三角形的边角关系去解直角三角形。
师:把握了直角三角形边角之间的各种关系,我们就能解决与直角三角形有关的实际问题了,这节课我们学习“解直角三角形及其应用”,此环节用时约5分钟。
(二)探究新知
在这一环节中,我分如下三步进行教学,第一步:例题引入新课,得出解直角三角形的概念。
例1(课件展示).如图,一棵大树在一次强烈的地震中于离地面 10米 折断倒下,树顶在离树根 24米 处,大树在折断之前高多少?
解:利用勾股定理可以求出折断倒下部分的长度为:
26+10=36(米)
答:大树在折断之前高为36米。
师:例子中,能求出折断的树干之间的夹角吗?
生:学生结合前面复习的边角关系讨论,得出结论——利用锐角三角函数的逆过程。
目的:让学生初步体会解直角三角形的含义、步骤及解题过程。
师:通过上面的例子,你们知道“解直角三角形”的含义吗?
生:学生讨论得出“解直角三角形”的含义(课件展示):“在直角三角形中,除直角外由已知元素求出未知元素的过程,叫做解直角三角形。”
(学生讨论过程中需使其理解三角形中“元素”的内涵,至于“元素”的定义不作深究。)
师:所以上面例子中,若要完整解该直角三角形,还需求出哪些元素?能求出来吗?
生:学生结合定义讨论、探索其方法,从而得出结论——利用两锐角互余。
目的:巩固解直角三角形的定义和目标,初步体会解直角三角形的方法——直角三角形的边角关系(勾股定理、两锐角互余、锐角三角函数),此步骤用时约10分钟。
第二步:师生共同解答例2,巩固解直角三角形的方法。
师:上面的例子是给了两条边。那么,如果给出一个锐角和一条边,能不能求出其他元素呢?下面学习例2:(课件展示例2)
例2.如图,在Rt△ABC中,∠C=900,∠A=2608’ ,b=4,求∠B、a、c (精确到0.01)
解:
∠B=900 -2608’ =63052’ b是∠A的邻边,c是斜边,
于是
cos 2608’ = =
4
从而
Cos2608’
c = ≈ 4.46
又∵ a是∠A的对边,于是
tan2608’ = = ,
从而 a = 4×tan 2608’ ≈ 1.96
师:a或c还可以用哪种方法求?
生:学生讨论得出方法,分析比较,从而得出——使用题目中原有的条件,可使结果更精确。
师:通过对上面两个例题的学习,如果让你设计一个关于解直角三角形的题目,你会给题目几个条件?如果只给两个角,可以吗?
生:学生讨论分析,得出结论。
目的:使学生体会到(课件展示)“在直角三角形中,除直角外,只要知道其中2个元素(至少有一个是边)就可以求出其余的3个元素”,此步骤用时约10分钟。
第三步:师生共同总结出解直角三角形的条件及类型。
师:通过上面两个例子的学习,你们知道解直角三角形有几种情况吗?
生:学生交流讨论归纳(课件展示):解直角三角形,只有下面两种情况:
(1) 已知两条边;
(2) 已知一条边和一个锐角。
目的:培养学生善总结,会总结的习惯和方法,使不同层次的学生得到不同的发展,此步骤用时约3分钟。
(三)课堂练习:
课本116页练习题的第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠B=53046’ ,b=3cm,求∠A、a、c(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,a=5.82cm ,c=9.60cm,求b、∠A、∠B(角度精确到1’ ,长度精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,∠A=38012’ ,c=15.68cm,求∠B、a、b(精确到0.01cm)
目的:使学生巩固利用直角三角形的有关知识解决实际问题,提高学生分析问题、解决问题的能力,此环节用时约6分钟。
(四)课堂小结
让学生自己小结这节课的收获,教师补充、纠正。
1、“解直角三角形”是求出直角三角形的所有元素。
2、解直角三角形的条件是除直角外的两个元素,且至少需要一边,即已知两边或已知一边一锐角。
3、解直角三角形的方法:
(1)已知两边求第三边(或已知一边且另两边存在一定关系)时,用勾股定理(后一种需设未知数,根据勾股定理列方程);
(2)已知或求解中有斜边时,用正弦、余弦;无斜边时,用正切;
(3)已知一个锐角求另一个锐角时,用两锐角互余。
目的:学生回顾本堂课的收获,体会如何从条件出发,正确选用适当的边角关系解题,此环节用时约6分钟。
(五)学生作业(此环节用时约6分钟)
课本120页习题4.3 A组第1、2、3题。
1、在Rt△ABC中,∠C=90°,∠A=28032’ ,c=7.92cm,求∠B(精确到1’ ),a、b(精确到0.01cm)。
2、在Rt△ABC中,∠C=90°,∠B=46054’ ,a=12.36cm,求∠A(精确到1’ ),b、c(精确到0.01cm)。
3、在Rt△ABC中,∠C=90°,a=3.68cm ,b=5.24cm,求c(精确到0.01cm)以及∠A、∠B(精确到1’ )。
四、教学评价
《新课程标准》提出了学生学习的方式是:“自主探索、动手实践、合作交流、勇于创新”。因此根据本节课的内容,为了更好地培养学生的创造能力,在教学中我注重引导学生运用探究学习的方法进行学习,确保了学生学习的有效性,激发了学生学习的欲望,学生真正成为了课堂的主人,在学生陈述自己探究结果时,我对学生不完整或不准确的回答适当地采用延迟性评价,不仅培养了学生对数学语言的表达能力和概括能力,同时充分挖掘了学生的潜能,也为学生提供了合作学习的空间,让学生在合作交流中提出问题并解决问题,从而发展了学生的合作探究能力。
一、教材分析
我说课的内容是华东师大版义务教育课程标准实验教科书,数学九年级上册第二十四章图形的全等的第二节全等三角形的识别的第四课时——利用角边角、角角边说明两个三角形全等。
《数学课程标准》对本节的要求是:经历三角形全等识别方法的探索过程,并会运用这些方法识别三角形全等。
本章是在前面学习了相似三角形、三角形的平移、旋转、轴对称变换基础上的学习。图形的全等在生产、生活、科学技术方面有广泛应用。本章第一节图形的全等和第二节全等三角形的识别两部分是一个整体。第一节给出一般概念,第二节是对特殊图形的深入研究。全等三角形的识别既是前面所学知识的延伸与拓展,又是后继学习的基础,并且是用以说明线段相等、两角相等的重要依据。因此,本节课的知识具有承上启下的作用。本节课在探索ASA、AAS全等三角形的识别方法过程中渗透了分类及转化的数学思想,掌握好全等三角形的识别方法这个有效的工具,就找到了联系很多初中几何图形之间的纽带,找到了解决很多综合型问题的钥匙。
基于对教材的分析,我确定了本节课的教学重点是:探索全等三角形的识别方法,会运用ASA、AAS方法识别三角形全等。
二、学情分析
从学生学习的心理基础和认知特点来说:学生已经学习过相似三角形和三角形的几种全等变换,特别是经过SSS、SAS的操作探究之后已经有了一定的数学化能力,能进行数学建模和简单的解释应用。而且初三学生已经从感性认识过渡向理性认识,有一定的合情推理能力。但学生在具体问题,特别是复杂的图形中综合运用多种方法来识别全等三角形、构造全等三角形,可能会产生一定的障碍。
因此我对本节课的设计是采用自主探究与合作交流相结合的模式,通过操作探究、开放性问题等各种数学活动,让学生独立思考,合作交流,从而引导其自主学习。特别是在练习的配置上,为了防止学生对纷繁的图形产生杂乱的感觉,所有的练习都是在例题图形的基础上做的变式,使学生更易于理解、接受,在变化中寻求统一,在变化中寻求发展。
基于对学情的分析,我确定了本节课的教学难点是:综合运用多种方法识别三角形全等。
三、教学目标
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:
1、能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。
2、会运用ASA、AAS识别三角形全等,能在探索及说理过程中进行有条理的思考,发展合情推理能力,渗透分类和转化的数学思想。
3、能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。
四、教学手段
本节课借助多媒体设备,通过设计恰当的问题情境,引导学生主动参与探究,采用剪刀、卡纸、刻度尺、量角器等学具,进行操作确认、合作交流。并利用几何画板课件,对习题图形进行变式,在练习上设计了大量开放性问题,引发学生深层思考,使学生经历操作确认—建立模型—解释应用——拓展反思过程,在原有基础上数学能力得到提高。
五、教学过程
本节课我设计了四个活动:
活动一、创设情境、引出新知
首先放一组图片,介绍金字塔的背景。
师生活动:教师通过金字塔这个对于学生神秘而又感兴趣的问题情境,激发学生的探究欲望,为本节课的继续探索做好准备。
问题1:经过科学家测量,这个金字塔的四个侧面的三角形是全等的,你认为测量哪些数据能方便而快捷的识别这些三角形是全等的呢?
师生活动:教师提出问题(1),学生可以畅所欲言的来回答,提出猜想。
教学效果预估与对策:如果学生猜想的不准确,教师可以提出测量三角形与地面相交的一边与夹这边的两角,是否可行。
设计意图:学生提出猜想的同时明确本节课的学习任务。
问题2:具备两角一边分别对应相等的两个三角形是否全等呢?这就是我们本节课要来探究的内容。
设计意图:引出新课
活动二、操作探究、得出结论
问题1:已知一个三角形的两角及一边,有几种可能的情况?
师生活动:在学生回答出两角夹一边、两角及其中一角的对边后,提出问题2。
设计意图:渗透分类的数学思想。
问题2:针对第一种情况,你有什么办法确认这种情况下的两个三角形是否全等呢?4人一个小组进行实验操作,大家要注意分工合作。
师生活动:这个问题设计的比较开放,教师提示可使用刻度尺、量角器、剪刀、卡纸等物品。学生以小组为单位自我确定方案,合作交流、比较确认。
教学效果预估与对策:这个环节是突破重点的重要过程,因此要给学生充分的时间去亲身体验、去感受。这个环节以学生画图、剪纸为主线展开探究活动,注重ASA条件的发生过程。在此过程中,教师应关注(1)学生在操作过程中的参与意识,合作交流能力。(2)学生是否能提出探索方案,并通过观察、比较得到结论。
设计意图:培养学生合作交流意识,提高学生探究问题的能力。同时体现了教学目标中的“能提出探索两个三角形全等的方案,经历全等三角形识别方法的探索过程,丰富学生从事数学活动的经验与体验,发展学生实践能力和创新意识。”
问题3:通过刚才大家的操作探究得到了什么结论呢?
师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。
教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够得出结论,如果不全面教师要耐心加以引导。
问题4:对于第二种情况,你怎样来确认这两个三角形是否全等呢?
设计意图:让学生调动思维,认识到除了可以仍然通过操作来确认,还可以通过三角形内角和定理将两角及其一角的对边转化成两角夹边的情况,用推理的方法得到。也体现了教学目标中渗透转化的数学思想。
问题5:通过同学们的推理又得到了满足什么条件的两个三角形是全等的呢?
师生活动:学生思考,叙述结论,并用几何语言表述,教师板书。并且师生共同总结出具有两角一边对应相等的两个三角形是全等的,无论这边是夹边还是某一角的对边。
活动三、解释应用,拓展延伸
问题1:现在同学们能来解决金字塔的问题了吗?
师生活动:师生共同解决引例中的问题,破解学生心中的疑团。
教学效果预估与对策:预计学生能比较容易的解决这个问题。
设计意图:使学生进一步体会到全等的实际应用价值,树立知识来源于实践又用于实践的观念。
问题2:到目前为止,我们学习了哪些全等三角形的识别方法?
设计意图:在教学中及时总结,目的是随时巩固新知识,完善学生的认知结构。并提醒学生在具体问题中要注意选择合适、便捷的方法。
练习:填空
(1)已知EB=EC,∠B=∠C,△EBD≌△ECA的根据是()
(2)已知BD=CA,∠B=∠C,△EBD≌△ECA的根据是()
(3)已知EB=EC,ED=EA,△EBD≌△ECA的根据是()
设计意图:加深学生对本节课知识的掌握并提示学生在寻找全等条件时,要注意挖掘题中的隐含条件。体现了教学目标中的“会运用ASA、AAS识别三角形全等”。
例:如图,∠ABC=∠DCB,
∠1=∠2,试说明△ABC≌△DCB、
师生活动:例题中的已知条件比较清晰、明了,难度不大,可以让一名学生板演,其余学生共同评价。
问题:在这两个三角形全等的基础上,你还能得到什么结论?
教学效果预估与对策:学生可能会得到线段相等、角相等、三角形全等等结论,教师要给予充分的肯定。
设计意图:开放性结论的设置可以引起学生的多种想法和深层思考。同时强调全等的作用,全等可以作为说明两个角相等、两条线段相等的重要途径。也体现了“能在探索及说理过程中进行有条理的思考,发展合情推理能力。”的教学目标。
例题变式1(条件不变,用几何画板进行图形的变式)
问题1:条件不变∠3=∠4,∠1=∠2,△ABC≌△DCB吗?
师生活动:教师运用几何画板,将例题中的点D沿BC翻折下来,学生思考,口述。
问题2:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?
师生活动:教师运用几何画板,将变式(1)中的一个三角形进行平移。
问题3:条件不变∠1=∠2,∠3=∠4,△ABE≌△DCF吗?还需要添加什么条件?
师生活动:教师运用几何画板,将变式(2)中的一个三角形进行旋转。
设计意图:经过这组题目,既对利用ASA、AAS方法识别三角形全等加以巩固,突出了本节课的重点,也使学生对于平移、旋转、轴对称变换和全等的关系有更进一步的理解。
例题变式2:
已知:EB=EC,点A在BE上,点D在CE上,给CA和BD赋予什么条件能使△ABC≌△DCB或使△EBD≌△ECA?
师生活动:这个练习采用了对问题的条件进行开放,以小组比赛的方式进行。
教学效果预估与对策:学生可能添加的条件是多种多样的,如:CA和BD是三角形的两条中线、高、角平分线等。在此环节中,教师应关注以下三点:
(1)学生对本节所学的ASA、AAS的理解程度。
(2)学生是否能顺利挖掘公共角、公共边这些隐含条件。
(3)是否有出现添加CA=BD,然后运用“SSA”来说明两个三角形全等这样的错误。
设计意图:这个习题的设置能培养学生观察图形和分析能力,同时也体现了教学目标中的“能综合运用多种方法识别三角形全等,并在解决问题过程中勤于思考、乐于探究,体验数学的价值。”
变式3:探究升级
已知:EB=EC,点A在BE上,点D在EC的延长线上,AD交BC于F,说明点F是AD的中点、
设计意图:这道题有一定难度,用于满足不同层次学生的学习需求。通过作不同的辅助线,构造全等三角形或相似三角形来解决问题。这道题综合运用了本节和以前所学的知识,既可以培养学生的发散思维能力和创新意识,又使学生构造出比较完整的知识体系,体现了解决问题策略的多样性的教学目标。可以给学生一定的讨论时间,使他们的思维碰撞、思维互补,更大激发学生的积极性。没有完成的部分可以作为课下研究的课题,调动学生的研究兴趣。
活动4总结反思,布置作业
我会以采访的形式提出两个问题:
1、通过本课的学习,你学到了哪些新的知识?
2、在学习这些知识的过程中,你的经验与教训是什么?
师生活动:教师提出问题,学生回答,互相补充。
教学效果预估与对策:预计学生能够概括出本节知识,总结出经验和教训,并有所收获。教师要加以引导,师生之间相互完善。
设计意图:通过第一个问题,学生可以回顾出本节课所学到的知识;
通过第二个问题,培养学生克服困难的自信心、意志力,并获得成功的体验,有助于学生全面认识数学的价值。
布置作业:
必做P91—4、5题。
选做用多种方法完成(探究升级)思考题。
设计意图:分层布置作业,使学生在原有的基础上都能得到提高。
点评:本稿是汤琦老师参加xxxx年辽宁省初中数学学科优秀课观摩评比活动获得一等奖的说课稿,她在教学内容、教学目标、学情分析和教学过程设计上作了较详细地说明,尤其是在学情分析和教学过程设计上把握到位,较好的体现了说课的基本要求。
在学情分析中,根据自己的教学经验、数学内在的逻辑关系以及思维发展理论,对本课内容在教与学中可能遇到的障碍进行预测,并对出现障碍的原因进行分析,做到言之有物,以具体数学内容为载体进行说明。
在教学过程设计中,做到与设定的教学目标相呼应,并在每一个问题后,都写出了问题的师生活动、设计意图、教学效果预估及对策,如问题3的教学效果预估与对策是在预知多数学生在经历了上述的探索过程后能够得出的结论,如果不全面教师要耐心加以引导。
尊敬的各位领导、教育同仁:
大家好:我来自于北安管理局龙门农场中学。
今天,我就我们团队《三角形全等的判定(二)》就是用SAS的方法判定两个三角形全等这一节课的课件制作和使用向大家做一下说明,希望能和大家共勉!
一、课件设计的意图:
现在教学中我们使用的是新教材,新教材向我们提供的"是一种教学素材,新教材有些知识点较旧教材难度有所降低,但对知识的手段要求更高了,灵活性更强了,解决问题的方法更多了,这就要求教师备课时要充分挖掘教材,领会课程标准的要求,深入揣摩编者的意图,由于八年级的学生已经具备了抽象思维能力,实践能力和探索能力,这就要求教师把教学内容要重新进行整合。数学《新课程标准》要求数学教学是数学活动的教学,教学过程中从实际出发,关注学生自主学习合作交流的意识,充分体现教师是学生学习活动的组织者,引导者、合作者,本节课是结合具体的数学活动内容采用“问题情境—建立模型—解释—应用拓展”的模式和结构展开,让学生经历知识的形成与应用的过程,从而增强学生学习数学的热情。这就要求数学教师在实际数学教学中充分利用现代化教学手段,创造性地使用教材,积极开发、利用各种教学资源,合理利用现代信息技术,把信息技术更好地应用到数学教学中去。
二、课件的作用:
多媒体辅助教学在现代化数学教学中起着越来越重要的作用,其教学手段具有直观性,内容具有丰富性,特别是在许多无法用实物教学的过程中起着无可替代的作用。它能极大地激发学生的学习兴趣,以形象具体的图、文、声、动等手段活跃课堂气氛,在数学教学中能克服许多常规教学中无法解决的困难,便于在短时间内让不同层次的学生得到相应的知识,同时增大课堂容量,对于提高学生的知识水平,培养学生的创新思维有着传统教学中无法比拟的优势,因此,我们把这一节课以课件的形式展示给学生们,学生们在这些丰富多彩以及动感的学习环境中,对教学内容更容易领会和掌握。
三、课件效果预测:
我们的课件制作采用当今操作比较简单,应用比较广,省时、省力的POWERPORT软件,该软件动感也比较强,是非常易于操作的一个软件平台。
首先,我们用激励性的语言和一只展翅飞翔的鹰做了一个片头,这为学生们学习本节课的知识充满了自信,也很给力,同时使心情得到放松,让学生在轻松愉快中去学习。
接着,我们用一个生活当中的实际问题导入这节课,让学生体会到数学来源于现实生活,同时又反作用于现实生活。由于这个问题在课堂上是无法用实物教学的,所以我们把这一问题制作成幻灯片,让学生通过联想,眼前呈现现实情境,使学生身临其境,同时,提高了学生的学习兴趣,激活了学生学习探究的欲望。
同时,我们把其它的内容也制作成了幻灯片,来实现图形和文字等一些要素的结合,使教师利用多媒体教学实现和学生更好地互动,并节省了一些时间,扩充了知识的范围,增加了课堂的容量,优化了课堂教学,从而高效地完成教学目标的过程。
在课件的制作上,我们把有的图形设计成动画,使学生对知识的理解更直观,更形象了,避免传统式枯燥的说教,使学生在轻松愉悦中掌握了知识,同时,难点得到突破。并在文字的设计上,我们把关键的字和词配上颜色,加深对学生的印象,使重点得到突出,详略得当。
四、课件的制作力求创新:
我们对这节课的课件制作上尽量简洁实用,突出实效性,避免出现一些花哨的画面,干扰学生的学习,分散学生的注意力,达到课件使用与课堂教学的完美结合。同时,我们并没有完全依赖于课件教学,还是以教材为主线,以课件为辅的教学理念充实课堂教学。
以上就是我们团队的课件制作的相关信息,敬请各位专家、老师提出宝贵意见。
谢谢大家!
各位老师:
你们好!
今天我要为大家讲的课题是《全等三角形的判定》。
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1、教材所处的地位和作用:
在此之前学生已学习了全等三角形的定义、性质,对全等三角形有了一定的了解,这为过渡到本节的深入学习起着铺垫作用。本节内容是在本章内容中,占据重要的的地位。以及为其他学科和今后的几何学习打下基础。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
①对全等、对顶角、对应边、对应角的定义,能够熟练掌握,并达到更深一层的理解。
②能够利用尺规画出全等的三角形,学生具有一定的作图能力。
③掌握并理解三角形全等判定定理中的sss和sAs。
④能够运用sss和sAs判定定理判定三角形是否全等,利用三角形全等解决一些实际问题。⑤通过教学培养学生分析问题,读图分析,解决实际问题,培养学生运用知识的能力,培养学生加强理论联系实际的能力,
(3)情感目标:通过的师生共同摸索判断全等三角形全等的方法,激发学生学习兴趣。
3、重点难点:①掌握并理解三角形全等的判定定理
②运用定理判定三角形全等,利用全等三角形解决实际的问题和几何题
二、教学策略(说教法)
1、教学手段:为了让学生充分理解和掌握三角形判定定理,突破难点,我在教学过程中,采用两探究引出定理,两个运用定理的例子,来进行教学。探究中主要用尺规作全等三角形的方法中引出全等三角形的条件,进而得出定理。这样学生就更容易理解和掌握定理。在用两个练习巩固知识。
2、教学方法及其理论依据:为了调动学生学习的积极性,充分体现课堂教学的主体性,我采用自学、议论、引导教学法,以学生为主体,老师为主导,引导学生运用观察、分析、概括的方法学习这部分内容,在整个教学过程当中,贯穿以学生为主体的原则,充分鼓励和表扬同学。
3、学情分析:(说学法)
1、八年级学生的思维已逐步从直观的形象思维为主向抽象的逻辑思维过渡,而且具备一定的信息收集的能力。
2、学生自主探索,思考问题,获取知识,掌握方法,真正成为学习的主体。
3、学生在在讨论学习中体验学习的快乐。讨论交流的友好氛围,让学生更有机会体验自己与他人的想法,从而掌握知识,发展技能,获得愉快的心理体验。
4、教学程序:
(1)复习回顾上节课内容:
定义:能够完全重合的三角形叫做全等三角形,重合的边叫对应边,重合的角叫对应角
性质:全等三角形对应边和对应角相等
三角形全等的性质让我们知道AB=A’B’Bc=B’c’Ac=A’c’∠A=∠A’∠B=∠B’∠c=∠c’,满足六个条件中这一部分,能确定△ABc≌△A’B’c’,先让学生画出△ABD,再让学生在画△A’B’c’过程中明白,确定一个条件或两个条件下不能确定两个三角形全等,通过适当时间的引导探究得出得出,当AB=A’B’Bc=B’c’Ac=A’c’时,只能画出一个A’B’c’满足条件,于是得出定理:三个对应边相等的两个三角形全等,简写成sss。
(3)得出定理,我通过讲解简单的例题,让学生懂得定理sss定理的运用。
(4)探究2:
得出:定理两边和它们的夹角对应相等的两个三角形全等,简写成sAs
(5)通过解决生活实例,讲解三角形全等的运用。
(6)练习:在适当的时间过后给出参考答案,并进行简单的讲解。
(7)小结:通过本节课的学习,你有哪些收获?
(8)我的板书:我会把复习内容和这节课的定理用红色粉笔标明在左边,中间板书探究和例题的内容,右边板书练习的参考答案。
(9)布置作业:P37,第1,3题。
扩展阅读文章
推荐阅读文章
老骥秘书网 https://www.round-online.com
Copyright © 2002-2018 . 老骥秘书网 版权所有