手机版
您的当前位置: 老骥秘书网 > 范文大全 > 公文范文 > 2023年度初中二次函数9篇

2023年度初中二次函数9篇

来源:公文范文 时间:2024-01-16 16:16:01 推荐访问: 函数 函数与方程(精练案) 函数知识要点

初中二次函数第1篇培养兴趣众所周知,数学是一门系统的、抽象的、需要较强逻辑思维的学科,它的这些特点也要求了学习该学科的学生需要有较强的逻辑思维.但是,数学又是我们初中学习中三门主要课程之一,不可否认,下面是小编为大家整理的初中二次函数9篇,供大家参考。

初中二次函数9篇

初中二次函数 第1篇

培养兴趣

众所周知,数学是一门系统的、抽象的、需要较强逻辑思维的学科,它的这些特点也要求了学习该学科的学生需要有较强的逻辑思维.但是,数学又是我们初中学习中三门主要课程之一,不可否认,数学是其中最重要的学科,是每名学生的必学课程,同时也是初中考试的必考科目.教师可以通过培养学生对二次函数的学习兴趣,来提高初中数学二次函数的教学效果,通过学生对学习二次函数课程的高积极性

使其在课堂教学时积极地配合教师的教学,集中精力跟随教师的上课进度,积极思考教师上课时提出的问题.在初中数学二次函数的教学过程中,经常会出现教师在讲台上侃侃而谈,下面的学生却昏昏欲睡,像二次函数这样涉及大量计算和分析的科目,对于学生的接受能力来说是较难的,因此,许多学校在对二次函数进行教学讲解时出现了严重的两极化现象,有些成绩好、理解能力好的学生,上课认真听讲,认为二次函数的学习是极具挑战性的,但是对于有些本身成绩差、接受能力较弱的学生来说,二次函数是他们根本听不懂的内容,根本没有学习的必要,反正他们也听不懂.

二次函数形象化

二次函数的学习过程是一个非常抽象的教学过程,正因其抽象性和逻辑性,使得学生在二次函数的学习上很难接受和掌握,为了学生能够很好地学习和掌握二次函数,二次函数教学形象化是一个很重要的教学方式.

数学教师在进行二次函数教学过程中可以充分利用二次函数的图像讲解其基本性质,将抽象化的理论知识用实际图像来表述,便于学生的理解和想象.同时,在对二次函数进行教学时,我们还要合理地利用图像教学的优势,将其具体化,每当遇到二次函数求解时,首先根据函数方程式画一个简易的草图,培养学生画图的好习惯,通过自己所画的二次图像真正地了解二次函数,并利用其解决问题.

初中二次函数 第2篇

二次函数是学生学习了正比例函数,一次函数和反比例函数以后进一步学习函数知识,是函数知识螺旋发展的一个重要环节,二次函数是描述变量之间关系的重要的数学模型,它既是其他学科研究时所采用的重要方法之一,也是某些简单变量最优化问题的数学模型。和一次函数,反比例函数一样,它也是一种非常基本的初等函数,对二次函数的研究将为学生进一步学习函数,体会函数的思想奠定基础和积累经验。

本节课的具体内容是让学生理解二次函数的概念,会判断一个函数是否是二次函数,并能够用二次函数的一般形式解决一些问题。为此,我先带领学生复习了什么是一次函数,然后设计具体的问题情境让学生自己“推导”出一个二次函数,并观察、总结它与一次函数有什么不同。在此基础上,逐步归纳出二次函数的一般解析式:y=ax+bx+c(a,b,c是常数,a≠0)。最后,通过随堂练习巩固二次函数的概念并解决一些简单的数学问题。

我个人以为,本节课的成功之处是:

教学时,通过实例引入二次函数的概念,让学生明确二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型,通过学习求一些简单的实际问题中二次函数的解析式,大部分学生重视了二次函数概念的形成和建构,在概念的学习过程中,让学生体验从问题出发到列二次函数解析式的过程,体验用函数思想去描述,研究变量之间变化规律的意义。让学生终生受用的思考方法,使学生的思维水平有所提高。这样不仅提高了学生独立发现问题、解决问题的能力,避免学习落入程式化的窠臼,而且也让学生体验到了成功的快乐。

初中二次函数 第3篇

数形结合

数形结合的方法,就是将数字与图形二者进行相互变换,不仅可以把问题变得更加简单,而且可以把抽象的问题变得更加具体,这种方法在数学的学习过程中经常用到. 通过对二次函数的定义以及性质进行学习,我们了解到它的图像是一个抛物线,并且它的图像还具有非常多的特殊性

例如,它具有对称性、单调性等等,我们在对二次函数求解的过程中,可以充分地利用它的图像所具有的这些性质,它不仅可以把复杂的二次函数变得更加的简单,而且可以把二次函数变得更加直观. 抛物线具有的对称性是一个非常重要的解题思路. 二次函数图像的对称轴一般与y轴平行或者重合;它的另一大特性是连续性,并且与其对应的方程最多只能够有两个实根,因此就会产生一个区间,这可以为我们的解题带来很多方便. 在解题的过程中还可以利用二次函数的单调性,这也是经常用到的方法.

代数推理

众所周知,二次函数的函数式是y = ax2 + bx + c,观察其函数式非常的简单,而与其对应的抛物线图像却比较容易发生变形,例如,在其中会有一般式、顶点式以及零点式等等,因此,在解决二次函数问题的过程中,其函数式会得到非常广泛的应用. 在二次函数的函数式y = ax2 + bx + c中,具有三个变量a,b,c,在确定这三个变量时一定要给出三个相互独立的条件,有一些时候将所给出的条件全部应用完成之后还不能够得出三个变量的值,这时我们就要使用逆向思维,看给出的条件中是否含有隐含条件,我们不能够被其中的假象迷惑;

我们还应该学会利用二次函数与方程根之间具有的关系,写出它的顶点式,我们可以对二次函数进行假设,对其图像进行描绘;然后使用函数所具有的一些性质对其进行限制,并且在对顶点式进行运用的过程中要非常的灵活. 顶点式看着比较复杂,而其中最简单的就是它,在此过程中充分的利用顶点式,最后一定会找到答案.

初中二次函数 第4篇

运用平行线造就同底等高的三角形等积

问题3 如图3点A坐标(2,4),直线x=2交x轴于点B,抛物线y=x2从点O沿OA方向平移,交x=2于点P,顶点M(m,n)到达A点时停止移动.当m为何值时,线段PB最短?此时相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等,若存在,请求出点Q的坐标;若不存在,请说明理由.

此题中第一问可以先由A点坐标和坐标原点求出直线OA的解析式,进而用m表示出n,进而求出抛物线y=x2平移到M点后的新坐标式,再令新坐标式中x=2,求出P点纵坐标的表达式(含有m),视为m的函数,m∈[0,2]时,求出何时PB最短;难点是在第二问,在解决第二问之前,必须定性判断出若Q点存在,那么如何首先以几何方式寻找出Q点的位置,并根据几何特征采用相应的推理或计算步骤?如图示,可以将直线PA左右平移,假设平移后与抛物线的交点为D且D、M与直线x=2水平距离相等,那么△DAP与△MAP同底(底为AP)等高,必然等积,所以D点即所求之一;同理,可以将直线AM平移,设平移后与抛物线交于E且E点与P点到AM等距,则△EAM与△PAM同底等高(底为AM)等积,E点也为所求;又或同理,可以将直线MP平移,设平移后与抛物线交于F且F点与A点到AM等距,则F点还为所求. 一旦寻求到解决的思路,则问题迎刃而解.

充分运用双曲线上的动点及其在坐标轴上的投影、坐标原点三点组成的三角形定积

双曲线与二次函数结合的问题在近年中考中屡见不鲜,充分运用双曲线y=(a>0)上的动点及其在坐标轴上的投影、坐标原点三点组成的三角形定积,这个定积就是双曲线对应的反比例函数解析式中的定值的一半,在一些问题中成为解决难点的关键.

已知抛物线y=ax2+b与双曲线交于C点,连接CO,动点P从O点出发,沿OA向A点移动,作PM交抛物线的对称轴于M点,已知△OMP的面积S与P点的坐标x关系为S=4x2,当△OMP与△OMC全等时,S=16, 且此时DM为OD的,试求抛物线的解析式.


初中二次函数 第5篇

计算方法

1.样本平均数:

2.样本方差:

3.样本标准差:

相交线与平行线、三角形、四边形的有关概念、判定、性质。

内容提要

一、直线、相交线、平行线

1.线段、射线、直线三者的区别与联系

从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示

3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)

4.两点间的距离(三个距离:点-点;点-线;线-线)

5.角(平角、周角、直角、锐角、钝角)

6.互为余角、互为补角及表示方法

7.角的平分线及其表示

8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)

9.对顶角及性质

10.平行线及判定与性质(互逆)(二者的区别与联系)

11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成

13.公理、定理

14.逆命题

二、三角形

分类:

⑴按边分;

⑵按角分

1.定义(包括内、外角)

2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n边形内角和;④n边形外角和。⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。⑶角与边:在同一三角形中,

3.三角形的主要线段

讨论:①定义②__线的交点—三角形的_心③性质

①高线②中线③角平分线④中垂线⑤中位线

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形

4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②专用方法

6.三角形的面积

⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线

⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线

8.证明方法

⑴直接证法:综合法、分析法

⑵间接证法—反证法:①反设②归谬③结论

⑶证线段相等、角相等常通过证三角形全等

⑷证线段倍分关系:加倍法、折半法

⑸证线段和差关系:延结法、截余法

⑹证面积关系:将面积表示出来

三、四边形

分类表:

1.一般性质(角)

⑴内角和:360°

⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360°

2.特殊四边形

⑴研究它们的一般方法:

⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定

⑶判定步骤:四边形→平行四边形→矩形→正方形

菱形

⑷对角线的纽带作用:

3.对称图形

⑴轴对称(定义及性质);⑵中心对称(定义及性质)

4.有关定理:①平行线等分线段定理及其推论1、2

②三角形、梯形的中位线定理

③平行线间的距离处处相等。(如,找下图中面积相等的三角形)

5.重要辅助线:①常连结四边形的对角线;②梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。

6.作图:任意等分线段。

初中二次函数 第6篇

这节课是安排在学了一次函数、反比例、一元二次方程之后的二次函数的第一节课,学习目标是要学生懂得二次函数概念,能分辨二次函数与其他函数的不同,能理解二次函数的一般形式,并能初步理解实际问题中对自变量的取值范围的限制。依我看,这节课的重点该放在“经历探索和表示二次函数关系的过程,获得用二次函数表示变量之间关系的体验,从而形成定义”上。一上完这节课后就有所感触:

1、二次函数是一种常见的函数,应用非常广泛,它是客观地反映现实世界中变量之间的数量关系和变化规律的一种非常重要的数学模型。许多实际问题往往可以归结为二次函数加以研究。

2、教学要重视概念的形成和建构,在概念的学习过程中,从丰富的现实背景和学生感兴趣的问题出发,通过学生之间的合作与交流的探究性活动,引导分析实际问题,如探究面积问题,利息问题、观察表格找规律及用关系式表示这些关系的过程,引出二次函数的概念,使学生感受二次函数与生活的密切联系。

3、课堂教学要求老师除了深入备好课外,还要懂得根据学生反馈来适时变通,组织学生讨论时该放则放,该收则收,合理使用好课堂45分钟,尽可能把课堂还给学生。

我觉得在教学中,只光热情还不够,没有积极调动学生的学习热情,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。总之,在数学教学中不但要善于设疑置难,激发学生的学习热情,同时要加强学生自学能力的培养,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。

初中二次函数 第7篇

一、基本概念

1.方程、方程的解(根)、方程组的解、解方程(组)

2.分类:

二、解方程的依据—等式性质

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、解法

1.一元一次方程的解法:去分母→去括号→移项→合并同类项→

系数化成1→解。

2.元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法

②加减法

四、一元二次方程

1.定义及一般形式:

2.解法:⑴直接开平方法(注意特征)

⑵配方法(注意步骤—推倒求根公式)

⑶公式法:

⑷因式分解法(特征:左边=0)

3.根的判别式:

4.根与系数顶的关系:

逆定理:若,则以为根的一元二次方程是:。

5.常用等式:

五、可化为一元二次方程的方程

1.分式方程

⑴定义

⑵基本思想:

⑶基本解法:①去分母法②换元法(如,)

⑷验根及方法

2.无理方程

⑴定义

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法

3.简单的二元二次方程组

由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。

六、列方程(组)解应用题

一概述

列方程(组)解应用题是中学数学联系实际的"一个重要方面。其具体步骤是:

⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。

⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。

⑶用含未知数的代数式表示相关的量。

⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。

⑸解方程及检验。

⑹答案。

综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

二常用的相等关系

1.行程问题(匀速运动)

基本关系:s=vt

⑴相遇问题(同时出发):

+ = ;

⑵追及问题(同时出发):

若甲出发t小时后,乙才出发,而后在B处追上甲,则

⑶水中航行:;

2.配料问题:溶质=溶液_浓度

溶液=溶质+溶剂

3.增长率问题:

4.工程问题:基本关系:工作量=工作效率_工作时间(常把工作量看着单位“1”)。

5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。

初中二次函数 第8篇

当h>0时,y=a(_-h)^2的图象可由抛物线y=a_^2向右平行移动h个单位得到,

当h<0时,则向左平行移动|h|个单位得到.

当h>0,k>0时,将抛物线y=a_^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(_-h)^2+k的图象;

当h>0,k<0时,将抛物线y=a_^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(_-h)^2+k的图象;

当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(_-h)^2+k的图象;

因此,研究抛物线y=a_^2+b_+c(a≠0)的图象,通过配方,将一般式化为y=a(_-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

2.抛物线y=a_^2+b_+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线_=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

3.抛物线y=a_^2+b_+c(a≠0),若a>0,当_≤-b/2a时,y随_的增大而减小;当_≥-b/2a时,y随_的增大而增大.若a<0,当_≤-b/2a时,y随_的增大而增大;当_≥-b/2a时,y随_的增大而减小.

4.抛物线y=a_^2+b_+c的图象与坐标轴的交点:

(1)图象与y轴一定相交,交点坐标为(0,c);

(2)当△=b^2-4ac>0,图象与_轴交于两点A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

(a≠0)的两根.这两点间的距离AB=|_?-_?|

当△=0.图象与_轴只有一个交点;

当△<0.图象与_轴没有交点.当a>0时,图象落在_轴的上方,_为任何实数时,都有y>0;当a<0时,图象落在_轴的下方,_为任何实数时,都有y<0.

5.抛物线y=a_^2+b_+c的最值:如果a>0(a<0),则当_=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

6.用待定系数法求二次函数的解析式

(1)当题给条件为已知图象经过三个已知点或已知_、y的三对对应值时,可设解析式为一般形式:

y=a_^2+b_+c(a≠0).

(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(_-h)^2+k(a≠0).

(3)当题给条件为已知图象与_轴的两个交点坐标时,可设解析式为两根式:y=a(_-_?)(_-_?)(a≠0).

7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

初中二次函数 第9篇

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

教学重点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学难点:求出函数的自变量的取值范围。

教学过程:

一、问题引新

1.设矩形花圃的垂直于墙(墙长18)的一边AB的长为_m,先取_的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

AB长_(m) 1 2 3 4 5 6 7 8 9

BC长(m) 12

面积y(m2) 48

2._的值是否可以任意取?有限定范围吗?

3.我们发现,当AB的长(_)确定后,矩形的面积(y)也随之确定,y是_的函数,试写出这个函数的关系式,教师可提出问题,(1)当AB=_m时,BC长等于多少m?(2)面积y等于多少? y=_(20-2_)

二、提出问题,解决问题

1、引导学生看书第二页问题一、二

2、观察概括

y=6_2 d= n /2 (n-3) y= 20 (1-_)2

以上函数关系式有什么共同特点? (都是含有二次项)

3、二次函数定义:形如y=a_2+b_+c(a、b、、c是常数,a≠0)的函数叫做_的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

4、课堂练习

(1) (口答)下列函数中,哪些是二次函数?

(1)y=5_+1 (2)y=4_2-1

(3)y=2_3-3_2 (4)y=5_4-3_+1

(2).P3练习第1,2题。

五、小结叙述二次函数的定义.

第二课时:26.1二次函数(2)

教学目标:

1、使学生会用描点法画出y=a_2的图象,理解抛物线的有关概念。

2、使学生经历、探索二次函数y=a_2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯。

教学重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=a_2的图象

教学难点:用描点法画出二次函数y=a_2的图象以及探索二次函数性质。

老骥秘书网 https://www.round-online.com

Copyright © 2002-2018 . 老骥秘书网 版权所有

Top