中国的数学家的故事第1篇李善兰(1811年1月22日—1882年12月9日)出身于读书世家,其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼。伯翼一生读书论道、不乐仕进。元初,其子李衍举贤良方正,下面是小编为大家整理的中国数学家故事8篇,供大家参考。
李善兰(1811年1月22日—1882年12月9日)出身于读书世家,其先祖可上溯至南宋末年京都汴梁(今河南开封)人李伯翼。伯翼一生读书论道、不乐仕进。元初,其子李衍举贤良方正,援朝请大夫嘉兴路总管府同知,全家定居海宁县硖石镇。500年来,传宗接代至17世孙,名叫李祖烈,号虚谷先生,治经学。祖烈初娶望海县知县许季溪的孙女为妻,不幸许氏早殇;
继娶妻妹填房,又病故。后续弦崔氏,系名儒崔景远之女。崔氏生三子:心兰(善兰)、心梅、心葵,并一女。心梅亦通晓数学。李善兰早年在家乡娶妻许氏,无子;
晚年在北京纳妾米氏,仍未得子;
乃过继外甥崔敬昌为嗣。敬昌字吟梅,曾任江海关文牍。 [2]
李善兰自幼就读于私塾,受到了良好的家庭教育。他资禀颖异,勤奋好学,于所读之诗书,过目即能成诵。
9岁时,李善兰发现父亲的书架上有一本中国古代数学名著——《九章算术》,感到十分新奇有趣,从此迷上了数学。 [2]
14岁时,李善兰又靠自学读懂了欧几里得《几何原本》前六卷,这是明末徐光启(1562—1633)、利玛窦(M.Ricci,1522—1610)合译的古希腊数学名著。欧氏几何严密的逻辑体系,清晰的数学推理,与偏重实用解法和计算技巧的中国古代传统数学思路迥异,自有它的特色和长处。李善兰在《九章算术》的基础上,又吸取了《几何原本》的新思想,这使他的数学造诣日趋精深。
几年后,作为州县的生员,李善兰到省府杭州参加乡试。因为他“于辞章训诂之学,虽皆涉猎,然好之总不及算学,故于算学用心极深”(李善兰《则古昔斋算学》自序),结果八股文章做得不好,落第。但他却毫不介意,而是利用在杭州的机会,留意搜寻各种数学书籍,买回了李冶的《测圆海镜》和戴震的《勾股割圆记》,仔细研读,使他的数学水平有了更大提高。 [2]
海盐人吴兆圻《读畴人书有感示李壬叔》诗中说:“众流汇一壑,雅志说算术。中西有派别,圆径穷密率.”“三统探汉法,余者难具悉.余方好兹学,心志穷专一。”许祥《硖川诗续钞》注曰:“秋塍(吴兆圻)承思亭先生家学,于夕桀、重差之术尤精.同里李壬叔善兰师事之。”看来,李善兰曾拜吴兆圻为师,学习过数学。 [2]
李善兰在故里与蒋仁荣、崔德华等亲朋好友组织“鸳湖吟社”,常游“东山别墅”,分韵唱和,其时曾利用相似勾股形对应边成比例的原理测算过东山的高度。他的经学老师陈奂在《师友渊源记》中说他“孰习九数之术,常立表线,用长短式依节候以测日景,便易稽考”。余楙在《白岳诗话》中说他“夜尝露坐山顶,以测象纬踌次”。至今李善兰的家乡还流传着他在新婚之夜探头于阁楼窗外观测星宿的故事。
1840年,鸦片战争爆发,帝国主义列强入侵中国的现实,激发了李善兰科学救国的思想。他说:“呜呼!今欧罗巴各国日益强盛,为中国边患。推原其故,制器精也,推原制器之精,算学明也。”“异日(中国)人人习算,制器日精,以威海外各国,令震摄,奉朝贡.”(李善兰《重学》序)从此他在家乡刻苦从事数学研究工作。 [2]
1845年前后,李善兰在嘉兴陆费家设馆授徒,得以与江浙一带的学者(主要是数学家)顾观光(1799—1862)、张文虎(1808—1885)、汪曰桢(1813—1881)等人相识,他们经常在一起讨论数学问题。此间,李善兰有关于“尖锥术”的著作《方圆阐幽》、《弧矢启秘》、《对数探源》等问世。其后,又撰《四元解》、(麟德术解》等。
1851年,李善兰与著名数学家戴煦(1805—1860)相识.戴煦于1852年称:“去岁获交海昌壬叔李君,……缘出予未竟残稿请正,而壬叔颇赏予余弧与切割二线互求之术,再四促成,今岁又寄扎询及,遂谢绝繁冗,扃户抄录,阅月乃竟.嗟乎!友朋之助,曷可少哉?”(戴煦《外切密率》自序)李善兰与友人在学术上相互切磋,取长补短,他与数学家罗士琳(1774—1853)、徐有壬(1800—1860)也“邮递问难,常朝覆而夕又至”(崔敬昌《李壬叔征君传》)。
1852年夏,李善兰到上海墨海书馆,将自己的数学著作给来华的外国传教士展阅、受到伟烈亚力(A.Wylie,1815—1887)等人的赞赏,从此开始了他与外国人合作翻译西方科学著作的生涯。 [2]
李善兰与伟烈亚力翻译的第一部书,是欧几里得《几何原本》后九卷.在译《几何原本》的同时,他又与艾约瑟(J.Edkins, 1823—1905)合译了《重学》20卷。其后,还与伟烈亚力合译了《谈天》18卷、《代数学》13卷、《代微积拾级》18卷,与韦廉臣(A.William-son,1829—1890)合译了《植物学》8卷。以上几种书均于1857至1859年间由上海墨海书馆刊行。此外,他还与伟烈亚力、傅兰雅(J.Fryer)合译过《奈端数理》(即牛顿《自然哲学的数学原理》),可惜没有译完,未能刊行。
1860年,李善兰在江苏巡抚徐有壬幕下作幕宾.太平军占领苏州后,他留在那儿的行箧,包括各种著作手稿,散失以尽.从此他“绝意时事”,避乱上海,埋头从事数学研究,重新著书立说。其间,他与数学家吴嘉善、刘彝程等人都有过学术上的交往。 [2]
1861年秋,洋务派首领、两江总督曾国藩(1811—1872)在安徽筹建安庆内军械所,并邀著名化学家徐寿(1811—1884)、数学家华蘅芳(1833—1902)入幕。李善兰也于1862年被“聘入戎幄,兼主书局”。他一到安庆,就拿出“印行无几而板毁”于战火的《几何原本》等数学书籍请求曾国藩重印刊行,并推荐张文虎、张斯桂等人入幕。他们同住一处,经常进行学术讨论,积极参与洋务新政中有关科学技术方面的活动。
1864年夏,曾国藩攻陷太平天国首都天京(今南京),李善兰等也跟着到了南京,他再次向曾国藩提出刻印他所译所著的数学书籍,得到曾国藩的支持和资助,于是有1865年金陵刊本《几何原本》15卷和1867年金陵刊本《则古昔斋算学》24卷问世.与此同时(1866),在南京开办金陵机器局的李鸿章(1823—1901)也资助李善兰重刻《重学》20卷并附《圆锥曲线说》3卷出版。
1866年,在北京的京师同文馆内添设了天文算学馆,广东巡抚郭嵩焘(1817—1891)上疏举荐李善兰为天文算学总教习,但李善兰忙于在南京出书,到1868年才北上就任。从此他完全转向于数学教育和研究工作,直至1882年去世。其间所教授的学生“先后约百余人。口讲指画,十余年如一日。诸生以学有成效,或官外省,或使重洋”(崔敬昌《李壬叔征君传》),知名者有席淦、贵荣、熊方柏、陈寿田、胡玉麟、李逢春等。晚年,获得意门生江槐庭、蔡锡勇二人,即致函华蘅芳,称“近日之事可喜者,无过于此,急欲告之阁下也”。这些人在传播近代科学特别是数学知识方面都起过重要作用。 [2]
李善兰到同文馆后,第二年(1869)即被“钦赐中书科中书”(从七品卿衔),1871年加内阁侍读衔,1874年升户部主事,加六品卿员外衔,1876年升员外郎(五品卿衔),1879年加四品卿衔,1882年授三品卿衔户部正郎、广东司行走、总理各国事务衙门章京。一时间,京师各“名公钜卿,皆折节与之交,声誉益噪”(蒋学坚《怀亭诗话》)。但他依然孜孜不倦从事同文馆教学工作,并埋头进行学术著述,1872年发表《考数根法》,1877年演算《代数难题》,1882年去世前几个月,“犹手著《级数勾股》二卷,老而勤学如此”(崔敬昌《李壬叔征君传》)。
李善兰在数学方面的研究成果主要见于其所著《则古昔斋算学》13种24卷和题为“《则古昔斋算学》十四”的《考数根法》。1867年刊行的《则古昔斋算学》收录他20多年来的各种天算著作,计有《方圆阐幽》1卷(1845)、《弧矢启秘》2卷(1845)、《对数探源》2卷(1845)、《垛积比类》4卷、《四元解》2卷(1845)、《麟德术解》3卷(1848)、《椭圆正术解》2卷、《椭圆新术》1卷、《椭圆拾遗》3卷、《火器真诀》1卷(1858)、《对数尖锥变法释》1卷、《级数回求》1卷、《天算或问》1卷.《考数根法》则发表于1872年的《中西闻见录》第二、三、四号上。李善兰的其他数学著述还有《测圆海镜解》、《测圆海镜图表》、《九容图表》、《粟布演草》、《同文馆算学课艺》和《同文馆珠算金踌针》等多种。
李善兰的数学成就主要有尖锥术、垛积术、素数论三个方面。
杨辉,北京邮电大学副教授。获CCF-腾讯犀牛鸟基金 [1] 。
杨辉是北京邮电大学信息光子学与光通信国家重点实验室副教授,北京邮电大学科学技术研究院副院长。20XX年,杨辉入选了中国科协青年人才托举工程项目 [2] 。20XX年毕业于北京邮电大学通信与信息系统专业,获工学博士学位。
他构建了内容与网络跨层协同控制模型,突破数据中心与光网络间控制隔离的限制,解决了异构网络统一运维的矛盾,实现千节点规模的异构组网与灵活管控,完成跨洲应用演示,该成果获得首届中国电子学会优秀博士学位论文奖等,并发表了ESI高被引论文。设计了多维资源聚合理论与集成调度机制,刻画出异质资源关联程度的数学表征,完成频谱、应用、时间等多维资源灵活性调度,解决了数据中心互联资源利用低效的难题,获得中国电子学会技术发明奖一等奖等。提出了边缘承载融合组网方法与优化策略,率先实现射频、光谱和处理资源的软定义融合组网,将业务提供时间降低至毫秒级,解决了边缘高带宽业务响应缓慢的难题,获得中国通信学会科技进步奖一等奖和IEEE ICOCN20XX青年科学家奖等。
朱世杰(1249年-1314年),字汉卿,号松庭,汉族,燕山(今北京)人氏,元代数学家、教育家,毕生从事数学教育。有“中世纪世界最伟大的数学家”之誉。
朱世杰在当时天元术的基础上发展出“四元术”,也就是列出四元高次多项式方程,以及消元求解的方法。此外他还创造出“垛积法”,即高阶等差数列的求和方法,与“招差术”,即高次内插法。
主要著作是《算学启蒙》与《四元玉鉴》。
13世纪末,历经战乱的祖国为元王朝所统一,遭到破坏的经济和文化又很快繁荣起来。蒙古统治者为了兴邦安国,便尊重知识,选拔人才,把各门科学推向新的高峰。
有一天,风景秀丽的扬州瘦西湖畔,来了一位教书先生,在寓所门前挂起一块招牌,上面用大字写着:“燕山朱松庭先生,专门教授四元术”。不几天,朱世杰门前门庭若市,求知者络绎不绝,就在朱世杰在接待学生报名之时,突然一声声叫骂声引起他的注意。
只见一穿绸戴银半老徐娘,追着一年轻的姑娘,边打边骂:“你这贱女人,大把的银子你不抓,难道想做大家闺秀,只怕你投错了胎,下辈子也别想了。”那姑娘被打得皮开肉绽,连内身衣服都被撕坏了。姑娘蜷成一团,任凭她打,也不跟她回去。朱世杰路见不平,便上前询问,那半老徐娘见冒出一个爱管闲事之人,就嘲笑道:“你难道想抱打不平,你送上50两银子,这姑娘就归你了!”
朱世杰见此情景,大怒道:“难道我掏不出50两银子。光天化日之下,竟胡作非为,难道没有王法不成?”
那半老徐娘讽刺道:“你这穷鬼,还谈什么王法,银子就是王法,你若能掏出50两银子,我便不打了。”
朱世杰愤怒已极,从口袋里抓出50两银子,摔在半老徐娘面前,拉起姑娘就回到自己的教书之地。原来,那半老徐娘是妓女院的鸨母,而这姑娘的父亲因借鸨母的10两银子,由于天灾,还不起银子,只好卖女儿抵债。今天碰巧遇上朱世杰,才把姑娘救出苦海。
后来,在朱世杰的精心教导下,这姑娘也颇懂些数学知识,成了朱世杰的得力助手,不几年,两人便结成夫妻。所以,扬州民间至今还流传着这样一句话:元朝朱汉卿,教书又育人。救人出苦海,婚姻大事成。
刘徽(约225年—约295年),汉族,山东滨州邹平市 [1] 人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列。刘徽在曹魏景初四年注《九章算术注》。
但因解法比较原始,缺乏必要的证明,刘徽则对此均作了补充证明。在这些证明中,显示了他在众多方面的创造性贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则,改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π的结果。他用割圆术,从直径为2尺的圆内接正六边形开始割圆,依次得正12边形、正24边形……,割得越细,正多边形面积和圆面积之差越小,用他的原话说是“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣。”他计算了3072边形面积并验证了这个值。刘徽提出的计算圆周率的科学方法,奠定了此后千余年来中国圆周率计算在世界上的领先地位。
刘徽在数学上的贡献极多,在开方不尽的问题中提出“求徽数”的思想,这方法与后来求无理根的近似值的方法一致,它不仅是圆周率精确计算的必要条件,而且促进了十进小数的产生;
在线性方程组解法中,他创造了比直除法更简便的互乘相消法,与现今解法基本一致;
并在中国数学史上第一次提出了“不定方程问题”;
他还建立了等差级数前n项和公式;
提出并定义了许多数学概念:如幂(面积);
方程(线性方程组);
正负数等等.刘徽还提出了许多公认正确的判断作为证明的前提.他的大多数推理、证明都合乎逻辑,十分严谨,从而把《九章算术》及他自己提出的解法、公式建立在必然性的基础之上。虽然刘徽没有写出自成体系的著作,但他注《九章算术》所运用的数学知识,实际上已经形成了一个独具特色、包括概念和判断、并以数学证明为其联系纽带的理论体系。
刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
个人成就
刘徽的数学成就大致为两方面:
一是整理中国古代数学体系并奠定了它的理论基础,这方面集中体现在《九章算术注》中。它实已形成为一个比较完整的理论体系:
数系理论
①用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;
在开方术 的注释中,他从开方不尽的意义出发,论述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。
②在筹式演算理论方面, 先给率以比较明确的定义,又以遍乘、通约、齐同等三种基本运算为基础,建立了数与式运算的统一的理论基础,他还用“率”来定义中国古代数学中的“方程”,即现代数学中线性方程组的增广矩阵。
③在勾股理论方面 逐一论证了有关勾股定理与解勾股形的计算原理,建立了相似勾股形理论,发展了勾股测量术,通过对“勾中容横”与“股中容直”之类的典型图形的论析,形成了中国特色的相似理论。
面积与体积理论
用出入相补、以盈补虚的原理及“割圆术”的极限方法提出了刘徽原理,并解决了多种几何形、几何体的面积、体积计算问题。这些方面的理论价值至今仍闪烁着余辉。
二是在继承的基础上提出了自己的创见。这方面主要体现为以下几项有代表性的创见:
①割圆术与圆周率, 他在《九章算术 圆田术》注中,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法。他首先从圆内接六边形开始割圆,每次边数倍增,算到192边形的面积,得到π,又算到3072边形的面积,得到π,称为“徽率”。
②刘徽原理 在《九章算术阳马术》注中,他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。
“牟合方盖”说
在《九章算术 开立圆术》注中,他指出了球体积公式V=9D3/16(D为球直径)的不精确性,并引入了“牟合方盖”这一著名的几何模型。“牟合方盖”是指正方体的两个轴互相垂直的内切圆柱体的贯交部分。
方程新术
在《九章算术 方程术》注中,他提出了解线性方程组的新方法,运用了比率算法的思想。
重差术
在自撰《海岛算经》中,他提出了重差术,采用了重表、连索和累矩等测高测远方法。他还运用“类推衍化”的方法,使重差术由两次测望,发展为“三望”、“四望”。而印度在7世纪,欧洲在15~16世纪才开始研究两次测望的问题。刘徽的工作,不仅对中国古代数学发展产生了深远影响,而且在世界数学史上也确立了崇高的历史地位。鉴于刘徽的巨大贡献,所以不少书上把他称作“中国数学史上的牛顿”。
秦九韶(1208年-1268年),字道古,汉族,鲁郡(今河南范县)人。
[1] 南宋著名数学家,与李冶、杨辉、朱世杰并称宋元数学四大家。
精研星象、音律、算术、诗词、弓、剑、营造之学,历任琼州知府、司农丞,后遭贬,卒于梅州任所,1247年完成著作《数书九章》,其中的大衍求一术(一次同余方程组问题的解法,也就是现在所称的中国剩余定理)、三斜求积术和秦九韶算法(高次方程正根的数值求法)是有世界意义的重要贡献,表述了一种求解一元高次多项式方程的数值解的算法——正负开方术。
秦九韶,字道古。鲁郡(今河南范县)人。
[3] 中国古代数学家。南宋嘉定元年(1208年)生;
约景定二年(1261年)被贬至梅州,’’咸淳四年(1268)二月,在梅州辞世,时年61岁 [2] 。
秦九韶其父秦季栖,进士出身,官至上部郎中、秘书少监。秦九韶聪敏勤学。宋绍定四年(1231),秦九韶考中进士,先后担任县尉、通判、参议官、州守、同农、寺丞等职。先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州,不久死于任所。他在政务之余,对数学进行潜心钻研,
他广泛搜集历学、数学、星象、音律、营造等资料,进行分析、研究。
宋淳祐四至七年(1244至1247),他在为母亲守孝时,把长期积累的数学知识和研究所得加以编辑,写成了闻名的巨著《数书九章》,并创造了“大衍求一术”。被称为“中国剩余定理”。他所论的“正负开方术”,被称为“秦九韶程序”。世界各国从小学、中学到大学的数学课程,几乎都接触到他的定理、定律和解题原则。
美国著名科学史家萨顿称秦九韶:“他那个民族、他那个时代,并且确实也是所有时代最伟大的数学家之一”。
秦九韶是鲁郡(今河南范县)人,父亲秦季槱,字宏父,绍熙四年(1193)进士,后任巴州(今四川巴中)守。嘉定十二年(1219)三月,兴元(今陕西汉中)军士张福、莫简等发动兵变,入川后攻取利州(今广元)、阆州(今阆中)、果州(今南充)、遂宁(今遂宁)、普州(今安岳)等地。在哗变军队进占巴州时,秦季槱弃城逃走,携全家辗转抵达南宋都城临安(今杭州)。在临安,秦季槱曾任工部郎中和秘书少监等官职。宝庆元年(1225)六月,被任命为潼川知府,返回四川。
秦九韶自幼生活在家乡,18岁时曾“在乡里为义兵首”,后随父亲移居京都。他是一位非常聪明的人,处处留心,好学不倦。其父任职工部郎中和秘书少监期间,正是他努力学习和积累知识的时候。工部郎中掌管营建,而秘书省则掌管图书,其下属机构设有太史局。因此,他有机会阅读大量典籍,并拜访天文历法和建筑等方面的专家,请教天文历法和土木工程问题,甚至可以深入工地,了解施工情况。他又曾向一位精通数学的隐士学习数学。他还向著名词人李刘学习骈俪诗词,达到较高水平。通过这一阶段的学习,秦九韶成为一位学识渊博、多才多艺的青年学者,时人说他“性极机巧,星象、音律、算术,以至营造等事,无不精究”,“游戏、毬、马、弓、剑,莫不能知。” [4]
1225年,秦九韶随父亲至潼川(今四川三台县)。蒙古军队已侵入今甘肃、陕西一带,北方的抗蒙(元)斗争如火如荼。南宋朝廷“募义兵五千人,与民约曰:‘敌至则官军守原堡,民丁保山砦,义兵为游击。”在各地建立了民间武装。通武知兵的秦九韶担任了民间武装的“义兵首”,维护地方治安。
数年后,李刘曾邀请他到南宋国史院校勘书籍文献,但未成行。端平三年(1236)元兵攻入四川,嘉陵江流域战乱仍频,秦九韶不得不经常参与军事活动。他后来在《数书九章》序中写道:“际时狄患,历岁遥塞,不自意全于矢石间,尝险罹忧,荏苒十祀,心槁气落”,真实地反映了这段动荡的生活。由于元兵进逼和溃卒骚乱,潼川已难以安居,于是他再度出川东下,先后担任过蕲州(今湖北蕲春)通判及和州(今安徽和县)守,最后定居湖州(今浙江吴兴)。秦九韶在任和州守期间,利用职权贩盐,强行卖给百姓,从中牟利。定居湖州后,所建住宅“极其宏敞”,“后为列屋,以处秀姬、管弦”。据载,他在湖州生活奢华,“用度无算”。淳祐四年(1244)八月,秦九韶以通直郎为建康府(今江苏南京)通判,十一月因母丧离任,回湖州守孝。在此期间,他专心致志研究数学,于淳祐七年(1247)九月完成数学名著《数书九章》。由于在天文历法方面的丰富知识和成就,他曾受到皇帝召见,阐述自己的见解,并呈有奏稿和《数学大略》(即《数书九章》)。
宝祐二年(1254),秦九韶回到建康,改任沿江制置使参议,不久去职。此后,他极力攀附和贿赂当朝权贵贾似道,得于宝祐六年(1258)任琼州守,但三个月后被免职。同时代的刘克庄说秦九韶“到郡(琼州)仅百日许,郡人莫不厌其贪暴,作卒哭歌以快其去”,周密亦说他“至郡数月,罢归,所携甚富”。看来,由于他在琼州的贪暴,百姓极为不满。秦九韶从琼州回到湖州后,投靠吴潜,得到吴潜赏识,两人关系甚密。吴潜曾相继在开庆元年(1259)拟任以司农寺丞,景定元年(1260)拟任以知临江军(今江西清江),都因遭到激烈反对而作罢。在这段时间里,秦九韶热衷于谋求官职,追逐功名利禄,在科学上没有显著成绩。在南宋统治集团内部的激烈斗争中,吴潜被罢官贬谪,秦九韶也受到牵连。约在景定二年(1261),他被贬至梅州做地方官,“在梅治政不辍”,不久便死于任所。
秦九韶在数学上的主要成就是系统地总结和发展了高次方程数值解法和一次同余组解法,提出了相当完备的“正负开方术”和“大衍求一术”,达到了当时世界数学的最高水平。
安岳修建的秦九韶纪念馆,恢宏壮观,雄伟气派。
商高是我国古代第一位数学家,出生于大约公元前十一世纪。关于他的生平,历史上的记载很少,只知道是西周初期人,约与周公旦同时期人。在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五。早于毕达哥拉斯定理五百到六百年。
勾股定律
数学成就据《周髀算经》记载,主要有三方面:勾股定理、测量术和分数运算。商高提出数之法,出于圆方;
圆出于方,方出于矩,矩出于九九八十一。故折矩,以为勾广三,股修四,径隅五。既方之外,半之一矩,环而共盘,得成三、四、五。” 商高这段话的意思就是说:“数是根据圆和方的道理计算得来的,圆来自于方,而方来自于直角三角形。当一条直角边(勾)为3,另一条直角边(股)为4,则斜边(弦)为5。”以后人们简称之为“勾三股四弦五”,命名为“勾股定理”也叫"商高定理"。以商高命名勾股定理,这不仅是中华民族的骄傲,更重要的是它确定了东方几何学开创的"原点",是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”。所以我们所学的勾股定理是商高提出的。
陈省身
陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,努力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。
陈省身9岁考入秀州中学预科一年级。这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。第二年,他进入离家较近的扶轮中学(今天津铁路一中)。陈省身在班上年纪虽小,却充分显露出他在数学方面的才华。陈省身考入南开大学理科那一年还不满15岁。他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也非常乐于帮助别人。一年级时有国文课,老师出题做作文,陈省身写得很快,一个题目往往能写出好几篇内容不同的文章。同学找他要,他自己留一篇,其余的都送人。到发作文时他才发现,给别人的那些得的分数反倒比自己那篇要高。
他不爱运动,喜欢打桥牌,且牌技极佳。图书馆是陈省身最爱去的地方,常常在书库里一呆就是好几个小时。他看书的门类很杂,历史、文学、自然科学方面的书,他都一一涉猎,无所不读。入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,只有一条路——进数学系。
数学系主任姜立夫,对陈省身的影响很大。数学系1926级学生只有5名,陈省身和吴大任是全班秀的。吴大任是广东人,毕业于南开中学,被保送到南开大学。他原先进物理系,后来被姜立夫的魅力所吸引,转到了数学系,和陈省身非常要好,成为终生知己。姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。二年级时,姜立夫让陈省身给自己当助手,任务是帮老师改卷子。起初只改一年级的,后来连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!
考入南开后,陈省身住进八里台校舍。每逢星期日,他从学校回家都要经过海光寺,那里是日本军营。看到荷枪实弹的日本鬼子那副耀武扬威的模样,他心里很不是滋味,不禁快步走开。再往前便是南市“三不管”,是个乌烟瘴气的地方,令他万分厌恶。从家返回学校时,又要经过南市、海光寺,直到走进八里台校园,他才感到松了口气。
胡和生于1928年出生在南京市一个艺术世家,祖父和父亲都是画家。她从小耳濡目染,聪明好学,画感、乐感很强,祖父和父亲特别喜欢她。读小学和中学时,她不偏科,文理兼优,这些对她后来从事数学事业帮助很大。
胡和生虽然爱好广泛,但她的理想不是成为一位画家,而是考上大学继续深造。抗战胜利以后,胡和生考进大学数学系,1950年毕业,又报考了浙江大学著名数学家、中国微分几何创始人苏步青教授的硕士研究生。1952年院系调整,苏教授与她转入了上海复旦大学。复旦是以苏步青为首的我国微分几何学派的策源地,人才济济,加之老一辈数学家的鼓励指导,同行的互勉竞争,托着这颗新星冉冉升起。
胡和生长期从事微分几何研究,在微分几何领域里取得了系统、深入、富有创造性的成就。例如,对超曲面的变形理论,常曲率空间的特征问题,她发展和改进了法国微分几何大师嘉当等人的工作。19 60-1965年,她研究有关齐次黎曼空间运动群方面的问题,给出了确定黎曼空间运动空隙性的一般有效方法,解决了六十年前意大利数学家福比尼所提出的问题。她把这个结果,整理在与自己的丈夫谷超豪合著的《齐性空间微分几何》一书中,受到同行称赞。她早期在我国最高学术刊物之一《数学学报》上发表了《共轭的仿射联络的扩充》(1953年)、《论射影平坦空间的一个特征》(1958年)、《关于黎曼空间的运动群与迷向群》(1964年)等重要论文。至今,她发表了七十多篇(部)论文、论著。她在射影微分几何、黎曼空间完全运动群、规范场等研究方面都有很好的建树,成为国际上有相当影响和知名度的女数学家。她的一些成果处于国际领先或国际先进水平。例如,在调和映照的研究中,她撰写的专著《孤立子理论与应用》,发展了“孤立子理论与几何理论”的成果,处于世界领先地位。
1982年,胡和生与合作者获国家自然科学三等奖;
1984年起担任《数学学报》副主编,并担任中国数学会副理事长;
1989年被聘为我国数学界的“陈省身数学奖”的评委;
1992年当选为中国科学院数学物理学部委员(1994年改称院士),至今选出来的数学家院士,只有胡和生一人是女性。
扩展阅读文章
推荐阅读文章
老骥秘书网 https://www.round-online.com
Copyright © 2002-2018 . 老骥秘书网 版权所有