长方体正方体体积反思第1篇一、联系实际生活,解决实际问题长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的。教师通过切开一个长3厘米、宽3厘米、高1厘米的长方体和棱长为2厘米的正方体下面是小编为大家整理的长方体正方体体积反思汇编11篇,供大家参考。
一、联系实际生活,解决实际问题
长方体和正方体体积的计算,是在理解了体积的概念和体积的单位以后教学的。教师通过切开一个长3厘米、宽3厘米、高1厘米的长方体和棱长为2厘米的正方体,看看它们各含有多少个1立方厘米的体积单位,引入计量体积的方法。但是在很多情况下,是不能用切开的方法来计量物体的体积的。教师采用了让学生用棱长1厘米的正方体拼摆长方体的实验,引导学生找出计算长方体体积的方法。教师考虑到学习数学是为了解决实际生活中的数学问题,要让学生认识数学知识与实际生活的关系,考虑到解决问题的实际情况,(如,不是所有物体都能切开,)怎样才能更好更快的解决问题,(如,找到计算长方体体积的公式,)从而从实践上升到理论,找到解决问题的一般规律。
二、加强实际操作,发展空间观念。
体积对学生来说是一个新概念,由认识平面图形到认识立体图形,是学生空间观念的一次重大的发展。然而此时,学生对立体的空间观念还很模糊,教师特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体计算公式的理解。在教学时,教师给了学生若干个1立方厘米的小正方体,让学生摆放出不同的长方体,并把长、宽、高的数据填入表格中,启发学生思考,根据记录的长、宽、高,摆这个长方体一排要摆几个小正方体,要摆几排,摆几层,一共是多少个小正方体。再引导学生进一步思考,这个长方体所含小正方体的个数,与它的长、宽、高有什么关系。最后,通过学生自己比较、发现长方体体积的计算公式,并用字母表示。在教学完长方体的计算公式后,教师继续启发学生根据正方体与长方体的关系,联系长方体体积的计算公式,引导学生自己推导出正方体体积的计算公式。
正是正确把握了本册教材的重点,发展学生的空间观念,加强实际操作。通过实际观察、制作、拆拼等活动,学生清楚地理解长方体体积计算公式的来源,并能够根据所给的已知条件正确地计算有关图形的体积。学生的动手能力也得到了提高。
三、小组合作交流、培养自主学习能力。
在新的教育观念的指导下,教师在课中大胆地实践,采用小组合作交流,给学生最大限度参与学习的机会,通过教师的引导,学生自主参与数学实践活动,经历了数学知识的发生、形成过程,掌握了数学建模方法。学生在活动中表现出主动参与、积极活动的热情让每个听课老师都能感受到,本节课的教学目标也就达到了,因为它不仅仅让学生学会了一种知识,还让学生培养了主动参与的意识,增进了师生、同伴之间的情感交流,提高了实际操作能力,并从活动中形成了数学意识,学会了创造。
本节课教学的是长方体和正方体的体积计算公式。
课始,我出示了一个用萝卜做成的长方体(长3厘米、宽2厘米、高2厘米),引导学生讨论:怎样知道这个长方体的体积?学生受上节课的影响,很快想到了切分成一个个1立方厘米的小正方体,再数数。就得出了这个长方体的体积。
(一)首先创设无法在视觉上比较体积大小的问题情境,让学生想办法解决,学生求知欲很高,想到了很多方法。采用一生的方法计算,在通过动手操作,摆摆、算算,让学生自己探索,验证方法的正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。公式的推导过程,是学生个人独立思考的过程,是小组合作学习的过程。学生对公式的来源、理解特别深刻,真正赋予知识的个人意义。
(二)我又请学生介绍数的方法,先数第一层的个数,再乘层数(相当于高),第一层也就是看看有几行(相当于宽),每行有几个(相当于长),这是全班学生的认可的最佳方法.紧接着让学生摆,记录.再讨论交流发现出了体积公式。虽然这里花费了很多的时间,以至于后面学生巩固公式解决问题的时间很少,但我个人认为还是值得的。学生在操作、交流的过程中不仅收获了“公式”,更多的是思维得到了训练,学习能力得到了培养。
(三)掌握了公式,就要实践运用,让学生感到数学源于生活,又用于生活,更让他们感到成功的喜悦。掌握了长方体体积公式后,出示魔方,让学生尝试解决它的体积,通过动手量、算,自然地迁移和转化到正方体体积计算公式。
(四)从课堂教学实践看,本节课教学效果较好,充分体现了教师为主导、学生为主体的教学观念。教师为学生的自主探索提供了广阔的时间和空间。学生学得自主,学得快乐,并学有所获。不但能做到较好的掌握课本知识,还能做到灵活的运用迁移和转化的数学思想学习新知,既训练了思维又培养了能力。
本课学习之前,孩子们们已经掌握了长方体体积的计算公式V=abh和正方体体积的计算公式V=a3,为了沟通这两个公式之间的联系,减轻学生记忆的负担,培养学生的抽象概括能力,也为以后学习柱体体积计算公式打下基础,本节课学习长方体和正方体统一的体积公式,即底面积乘高。
课始我引入了古代数学家计算长方体体积的方法引入:
西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺。”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。
目的是想让孩子们知道两千多年前,我国古代数学家已经明白了怎么计算长方体的体积,让他们明白我们在此基础上学习肯定能学得更出色,从而激发孩子们学好数学知识的情感。
接着围绕四个问题展开讨论:
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?
(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?
(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?
这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。
在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。
作为仅有两年教龄的新老师,我总感觉自己在教学方面存在很多的不足,但是具体有哪些不足,应该怎样改正,我却不是很清楚。这次磨课过程中,老师们给我提了很多宝贵的教学建议,很细致也很有效,而且我自己也更注重自我反思了,让我对自己的教学有了更深入的了解,明确了自己的不足和今后努力的`方向。
在《长方体和正方体的体积》这节课中,难点是理解长方体和正方体的体积公式的推导过程,所以我把主要的时间和精力都放在怎样顺利地引导学生通过自己的实验、观察推导出公式。第一次课中,因为做完实验没有要求学生观察、思考有什么发现,大部分学生都没能发现每排个数、排数、层数和长、宽、高对应的关系,所以公式的推导有点突兀;
第二次课中,我吸取了之前的经验,先叫学生观察了,但是我引导学生说发现的时候,引导得不够具体到位,学生不知道我的意图,所以推导公式的过程显得有些单薄;
第三次课中,我把复习当中的数小正方体的个数计算长方体的体积这个内容的PPT课件改成了循序渐进的,先是出示一排,学生数完后,在此基础上出示两排的,引导学生说出“每排个数×排数=总个数”,最后出示三层的,引导学生说出“总个数=每排个数×排数×层数”这样学生的思路非常清晰,对这个公式理解深刻,为后面的教学打好基础。而且学生的实验和讨论都很充分,所以公式推导得很顺利。但是有点不足的是,我没有分步骤及时板书,而是等到公式都出来后才板书,没有体现课堂的生成资源。
在练习方面,第一次课我设计的练习大部分偏难,特别是最后一道练习,涉及容积的内容,应该在学习完容积之后才能做的`。而且我的设计大部分参考了《黄冈小状元》里面的练习类型,想着课堂上练习了,学生做当天的作业会比较顺利,没有考虑到这些练习是否应该在第一节新授课出现。通过这次的磨课,我以后设计练习的时候会更加注重练习与课程的紧密联系和练习的层次。
在学生的状态方面,老师们反映学生回答问题和小组讨论的积极性不高。我觉得问题在于我平时的教学习惯,比较少安排学生合作讨论,而且对孩子们的评价比较单一,没有及时鼓励和奖励。我在以后的教学中会多运用小组合作讨论的教学手段,对于积极发言的孩子除了口头表扬,还要统计次数,及时奖励。
在我个人教学状态方面,第一次课用的班级不是我自己教的班级,但是我反而比较放得开,一是因为第一次课的教学设计是完全由我自己设计的,二是因为不知道自己的不足,无知者无畏吧,所以上得比较轻松。第一次课后,老师们给我提了很多很好的建议,我就尽量按照大家的建议修改自己的设计,但是结果却适得其反。我上课的时候总想着自己这个时候应该做什么,越想越紧张,反而上得不好。通过这次课,我明白了,对于大家的建议我要懂得取舍,要把它融入自己的教学设计,不能为了采纳建议而不管自己能不能利用好。另外,我觉得通过这次磨课,我开始学着放下自己的心理负担,课前认真备课,课中投入教学,课后积极反思。
本课学习之前,孩子们们已经掌握了长方体体积的计算公式V=abh和正方体体积的计算公式V=a3,为了沟通这两个公式之间的联系,减轻学生记忆的负担,培养学生的抽象概括能力,也为以后学习柱体体积计算公式打下基础,本节课学习长方体和正方体统一的体积公式,即底面积乘高。
课始我引入了古代数学家计算长方体体积的方法引入:
西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》。这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题。书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积。
目的是想让孩子们知道两千多年前,我国古代数学家已经明白了怎么计算长方体的体积,让他们明白我们在此基础上学习肯定能学得更出色,从而激发孩子们学好数学知识的情感。
接着围绕四个问题展开讨论:
(1)看完这段叙述,你想到什么?
(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?
(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?
(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?
这四个问题为孩子们思考、交流并推出长方体、正方体的体积计算统一公式起了一个导航的作用。它加深了学生对长方体、正方体特征及之间的关系的认识,渗透了几何变换的思想方法,也让孩子们感受我国数学的源远流长。
在第三个问题的交流中,我主要引导学生将自己掌握得长方体和正方体体积计算公式和古代数学家总结出来的底面积乘高进行对比,在交流对比中明白长乘宽或者棱长乘棱长其实就是底面积,之后,在调整中概括出长方体和正方体统一的体积计算公式。这次对比,使孩子们对原有的计算公式进行了重组,使他们对柱体体积计算方法也有了一个基本的认识,也为日后学习各种柱体体积奠定了基础。
在教学这节课之后,我有以下几点感受:
1、教师应该成为课程的创造者和开发者
教师从教教材,到用教材教,是一种观念和方法的转变;
从用教材中的材料教,到选择、设计合适的材料教,更是一种创造和发展。本节课教学内容是在学生学完长方体和正方体的体积的基础上,充分运用知识的迁移规律,引导学生掌握新知识。让学生通过观察、思考自己发现总结出统一计算公式,并熟练掌握长方体和正方体的体积计算。我认为选择这样的材料不仅有助于学生的发展,也有助于数学学习材料的发展,能促使学生积极思维,有利于组织学生积极主动地投入学习。教师不应该仅仅是课程的实施者,而且应该成为课程的创造者和开发者。
2、学生拥有不可估量的潜力
把学生当作接受知识的容器的时代似乎已经过去。但学生能不能进行探究式的、自主发现式的学习,并不那么为大家的行动所接受。我们的教育基本上还是以接受学习作为主要的学习方式。学生能不能解决那些连成人都会感到困惑的问题?当我们把问题“V=sh这个公式,在实际计算中哪些地方能应用到?”展现在学生面前时,发现并不如我们所预料的:学生无法解决。但是我相信学生确实拥有不可估量的潜力,只要我们为学生创设出一个能展现他们才能的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。关键是要给学生留有较大的时间和空间。一个问题的解决需要时间和空间,只有给学生留有较大的时间和空间,学生才能有所发现、有所创造。
当然,每一节课的教学时间是有限的,在有限的时间内,能不能把尽可能多的时间和空间留给学生学习?再说,今天给学生留有了充足的时间和空间,学生得到了很好的发展,那么,在今后学生就会有更大的收获和发展。欲速则不达,我们现在的教育不就是常常为了急于求成,造成留给学生要记忆的东西不少,学会思维的东西却不多这一大遗憾吗?
3、要让学生自主学习自主发展
“授人以鱼不如授人以渔”,这是一种不错的教学。近日听到有人说:“授人以渔不如授之以渔场。”我很赞同这样的说法。这节课,我基本上没有讲,整堂课都体现了学生的参与。要开发学生的潜力,教师可以为学生准备必要的条件,但完全不必为学生准备充分的条件。我们只要为学生提供一个“渔场”,让学生在实践中成长。学生才能真正自主学习、自主发展。
作为仅有两年教龄的新老师,我总感觉自己在教学方面存在很多的不足,但是具体有哪些不足,应该怎样改正,我却不是很清楚。这次磨课过程中,老师们给我提了很多宝贵的教学建议,很细致也很有效,而且我自己也更注重自我反思了,让我对自己的教学有了更深入的了解,明确了自己的不足和今后努力的方向。
在《长方体和正方体的体积》这节课中,难点是理解长方体和正方体的体积公式的推导过程,所以我把主要的时间和精力都放在怎样顺利地引导学生通过自己的实验、观察推导出公式。第一次课中,因为做完实验没有要求学生观察、思考有什么发现,大部分学生都没能发现每排个数、排数、层数和长、宽、高对应的关系,所以公式的推导有点突兀;
第二次课中,我吸取了之前的经验,先叫学生观察了,但是我引导学生说发现的时候,引导得不够具体到位,学生不知道我的意图,所以推导公式的过程显得有些单薄;
第三次课中,我把复习当中的数小正方体的个数计算长方体的"体积这个内容的PPT课件改成了循序渐进的,先是出示一排,学生数完后,在此基础上出示两排的,引导学生说出“每排个数×排数=总个数”,最后出示三层的,引导学生说出“总个数=每排个数×排数×层数”这样学生的思路非常清晰,对这个公式理解深刻,为后面的教学打好基础。而且学生的实验和讨论都很充分,所以公式推导得很顺利。但是有点不足的是,我没有分步骤及时板书,而是等到公式都出来后才板书,没有体现课堂的生成资源。
在练习方面,第一次课我设计的练习大部分偏难,特别是最后一道练习,涉及容积的内容,应该在学习完容积之后才能做的。而且我的设计大部分参考了《黄冈小状元》里面的练习类型,想着课堂上练习了,学生做当天的作业会比较顺利,没有考虑到这些练习是否应该在第一节新授课出现。通过这次的磨课,我以后设计练习的时候会更加注重练习与课程的紧密联系和练习的层次。
在学生的状态方面,老师们反映学生回答问题和小组讨论的积极性不高。我觉得问题在于我平时的教学习惯,比较少安排学生合作讨论,而且对孩子们的评价比较单一,没有及时鼓励和奖励。我在以后的教学中会多运用小组合作讨论的教学手段,对于积极发言的孩子除了口头表扬,还要统计次数,及时奖励。
在我个人教学状态方面,第一次课用的班级不是我自己教的班级,但是我反而比较放得开,一是因为第一次课的教学设计是完全由我自己设计的,二是因为不知道自己的不足,无知者无畏吧,所以上得比较轻松。第一次课后,老师们给我提了很多很好的建议,我就尽量按照大家的建议修改自己的设计,但是结果却适得其反。我上课的时候总想着自己这个时候应该做什么,越想越紧张,反而上得不好。通过这次课,我明白了,对于大家的建议我要懂得取舍,要把它融入自己的教学设计,不能为了采纳建议而不管自己能不能利用好。另外,我觉得通过这次磨课,我开始学着放下自己的心理负担,课前认真备课,课中投入教学,课后积极反思。
本节课的目的是让学生通过实践活动,探索并掌握长方体、正方体体积的计算方法;在观察、操作、探索的过程中,提高动手操作能力,进一步发展学生的空间观念,因此课一开始,我并没有设置“漂亮”教学情境,而是在处理上一道练习题时引入:12个小正方体摆出不同情况的长方体。每摆出一种,学生记录其长、宽、高、体积,观察得出长方体的体积计算公式。这样做的目的有二个:一是抛弃繁索的动作,直奔中心; 二是快速刺激学生的探索欲望,并赢得了充分的
操作探索时间。
在这一个操作探索活动中,学生通过数据的记录和分析,,发现长方体与长、宽、高之间的关系,知道了求长方体体积所必须具备的条件,并根据数据抽象且纳出体积公式。这当中不仅提高了学生的动手操作能力,也发展了学生的分析概括能力。
最后,我鼓励学生大胆猜想,正方体的体积计算公式会是什么样子呢?根据长方体和正方体的关系来推断,接着用推导长方体体积的办法对自己的猜想进行驻记,使学生感到新知识不新、不难,实现平稳过渡树立学习新知识、解决新问题的信心。
长方体和正方体的体积教学反思
本节课教学时我主要运用操作实验法、引探发现法、小组合作学习法等多种方法,给学生提供自主探索的平台,让学生通过小组合作学习,操作实验、观察、猜想、发现推导出长方体和正方体体积计算统一公式,让学生亲身经历知识的形成全过程,从而证明了自己的能力,品尝到成功的喜悦。培养学生的合作意识和实践能力。
一、利用实际生活中的实物,引导学生解决实际问题。
二、运用找到的规律,进行实际操作。
体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,我特别注意到加强实物或教具的演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,我结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出
这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。
《长方体和正方体的体积计算》教学反思
本节课教学的是长方体和正方体的体积计算公式。
课始,我出示了一个用萝卜做成的长方体(长3厘米、宽2厘米、高2厘米),引导学生讨论:怎样知道这个长方体的体积?学生受上节课的影响,很快想到了切分成一个个1立方厘米的小正方体,再数数。就得出了这个长方体的体积。
(一)首先创设无法在视觉上比较体积大小的问题情境,让学生想办法解决,学生求知欲很高,想到了很多方法。采用一生的方法计算,在通过动手操作,摆摆、算算,让学生自己探索,验证方法的正确性与可行性,把求长方体的体积很自然地引入了求小正方体的个数,把复杂问题简单化,最后借助小组合作交流,经过归纳、推理,揭示出长方体体积计算公式。公式的推导过程,是学生个人独立思考的过程,是小组合作学习的过程。学生对公式的来源、理解特别深刻,真正赋予知识的个人意义。
(二)我又请学生介绍数的方法,先数第一层的个数,再乘层数(相当于高),第一层也就是看看有几行(相当于宽),每行有几个(相当于长),这是全班学生的认可的最佳方法.紧接着让学生摆,记录.再讨论交流发现出了体积公式。虽然这里花费了很多的时间,以至于后面学生巩固公式解决问题的时间很少,但我个人认为还是值得的。学生在操作、交流的过程中不仅收获了“公式”,更多的是思维得到了训练,学习能力得到了培养。
(三)掌握了公式,就要实践运用,让学生感到数学源于生活,又用于生活,更让他们感到成功的喜悦。掌握了长方体体积公式后,出示魔方,让学生尝试解决它的体积,通过动手量、算,自然地迁移和转化到正方体体积计算公式。
(四)从课堂教学实践看,本节课教学效果较好,充分体现了教师为主导、学生为主体的教学观念。教师为学生的自主探索提供了广阔的时间和空间。学生学得自主,学得快乐,并学有所获。不但能做到较好的掌握课本知识,还能做到灵活的运用迁移和转化的数学思想学习新知,既训练了思维又培养了能力。
本节课教学之前,学生已经掌握了长方体体积的计算公式,于是,我在教学正方体体积的计算公式时,启发学生联想长方体和正方体的联系,引导学生根据长方体体积的计算公式,自己推导出正方体的体积公式,培养了学生的迁移能力。
在引导学生推导长方体体积的另一种计算方法时,我让学生对两种方法进行比较,在比较中得出长方体体积的另一种计算方法;
在引导学生推导长方体和正方体的体积公式的统一时,让学生将长方体和正方体体积的计算公式进行比较,从而推导出长方体和正方体统一的体积公式,并且使他们对柱体体积的计算方法有了一个基本的认识,为以后学习各种柱体体积计算奠定了基础。
这节教学以学生活动为主,让学生亲自参与探究过程,教师的作用主要体现在创设学生亲自探究的情境,并引导学生观察、比较、讨论,使他们在交流中各抒己见。为了突出重点,对学生在探究中发现的某些结论有的放矢,最终使学生得出了“《长方体的正方体体积的统一公式》”。这样教学,既突出了学生的主体地位,又体现了“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的新理念。学生在这样一次次的自我发现、探索和概括中感受到了学习成功的乐趣,体验到了学习成功的快乐,提高了学生的创新意识,发展了学生的思维能力。
教学实践告诉我们:书本知识是前人发现的,但是对于学生来说,那还是有待发现的新知识。因此在教学中我引导学生按一定的步骤去自觉的提出问题、研究问题、解决问题和发现新知,从而使他们在学习过程中获取成功的体验,这比教师急于下结论要好得多。学生一时不能发现的问题,教师要有足够的耐心,给孩子们充足的时间,让学生起思考,去发现。这时教师绝对不能暗示、替代。这就是“授之以鱼,不如授之以渔”。
几点缺憾:
1、课堂教学略显前松后紧,控制教学的能力有待提高。
2、在评价方面缺乏教学思想和教学方法等实质性的评价。
3、面向全体,关注大多数学生做的不够。一些学生思维不够活跃,课上大胆交流的意识不强。这是教师关注的不够,应该给他们一些机会,让他们也参与近来,与大家一起体验成功的乐趣和成长的快乐。
一、利用实际生活中的实物,引导学生解决实际问题。
长方体和正方体体积的实际应用,学生是在掌握了体积的概念和单位等内容的基础上进行学习的。教师在教学过程中,可以运用日常生活中常见几何体来进行教学,如粉笔盒、课本和长方体的橡皮擦等实物,教学前教师可以先准备一立方厘米的正方体若干个,运用这些小正方体按小组分给学生,然后让学生分小组进行摆成不同长宽高的长方体,再数出这些长方体各含有多少个1立方厘米的体积单位,接着引导学生找出自己摆成的长方体的长宽高各是多少,再观察这个长方体的长宽高三个条件的积与数出来的小正方体的个数有什么关系,然后让学生进行小组讨论,找出长方体的体积的的计算方法。这时教师可以在每个小组中提问学生,你们找出的长方体的计算方法是怎样的?你们是怎样找出来的?在这提问中学生答对的教师要给予肯定,答错的也要给予鼓励,然后师生共同把长方体的体积公式归纳出来:长方体的体积=长×宽×高,用字母表示:V=abh。这样教学,教师就把学生带到了从实践知识上升到理论知识,并找到解决问题的一般规律。另外,教师也可以用如此类推的方法引导学生归纳出正方体的体积公式。
二、运用找到的规律,进行实际操作。
体积对学生来说是一个新概念,他们是由认识平面图形上升到认识立体图形,是空间观念的一次质的飞跃。然而此时,学生对立体的空间观念还比较模糊,教师应特别注意到加强实物或教具的"演示和学生的动手操作,以发展学生的空间观念,加深对长方体和正方体计算公式的理解。在教学时,教师结合实际的教具,引导学生进一步对长方体和正方体体积公式的强化记忆,如粉笔盒的体积是多少?怎样求它的体积?要求它的体积必须有哪些条件?(教师可以请几个学生到讲台上实际量出粉笔盒的长宽高,并把这些条件板书在黑板上,让全体学生进行计算粉笔盒的体积),当学生准确算出粉笔盒的体积后,教师话峰一转,你们知道自己的数学课本的体积有多少吗?你能求出数学课本的体积吗?要求出数学课本的体积是多少?必须有哪些条件?你能找出这些条件吗?下面请同学们求出自己数学课本的体积是多少?看谁做得又对又快。通过实际观察、操作等活动,学生清楚地理解长方体和正方体的体积计算公式,并能够根据所给的已知条件正确地计算有关图形的体积,动手能力也得到了相应的提高。
您现在正在阅读的《长方体和正方体体积的统一公式》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!《长方体和正方体体积的统一公式》教学反思本节课教学之前, 学生已经掌握了长方体体积的计算公式,于是,我在教学正方体体积的计算公式时,启发学生联想长方体和正方体的联系,引导学生根据长方体体积的计算公式,自己推导出正方体的体积公式,培养了学生的迁移能力.
在引导学生推导长方体体积的另一种计算方法时,我让学生对两种方法进行比较,在比较中得出长方体体积的另一种计算方法;在引导学生推导长方体和正方体的体积公式的统一时,让学生将长方体和正方体体积的计算公式进行比较,从而推导出长方体和正方体统一的体积公式,并且使他们对柱体体积的计算方法有了一个基本的认识,为以后学习各种柱体体积计算奠定了基础.
这节教学以学生活动为主,让学生亲自参与探究过程,教师的作用主要体现在创设学生亲自探究的情境,并引导学生观察、比较、讨论,使他们在交流中各抒己见.为了突出重点,对学生在探究中发现的某些结论有的放矢,最终使学生得出了《长方体的正方体体积的统一公式》.这样教学,既突出了学生的主体地位,又体现了学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者的新理念.学生在这样一次次的自我发现、探索和概括中感受到了学习成功的乐趣,体验到了学习成功的快乐,提高了学生的创新意识,发展了学生的思维能力.
教学实践告诉我们:书本知识是前人发现的,但是对于学生来说,那还是有待发现的新知识.因此在教学中我引导学生按一定的步骤去自觉的提出问题、研究问题、解决问题和发现新知,从而使他们在学习过程中获取成功的体验,这比教师急于下结论要好得多.学生一时不能发现的问题,教师要有足够的耐心,给孩子们充足的时间,让学生起思考,去发现.这时教师绝对不能暗示、替代.这就是授之以鱼,不如授之以渔.
几点缺憾:
1. 课堂教学略显前松后紧,控制教学的能力有待提高.
2. 在评价方面缺乏教学思想和教学方法等实质性的评价.
3. 面向全体,关注大多数学生做的不够.一些学生思维不够活跃,课上大胆交流的意识不强.这是教师关注的不够,应该给他们一些机会,让他们也参与近来,与大家一起体验成功的乐趣和成长的快乐.
扩展阅读文章
推荐阅读文章
老骥秘书网 https://www.round-online.com
Copyright © 2002-2018 . 老骥秘书网 版权所有